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Abstract

planning objectives and treatment outcome predictions.

accumulated dose.

Background: Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose
points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends
heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose

A framework was developed where the dose mapping can be associated with a variable known uncertainty to
simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose
planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin
needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation
framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to
also study the dose mapping sensitivity to penumbra widths.

Results: The planning parameter most sensitive to the DIR uncertainty was found to be the target Dgs. We found
that the registration mean absolute error needs to be <0.20 cm to obtain an uncertainty better than 3% of the
calculated Dys for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the
registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk.

Conclusions: The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since
this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled
quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the

Keywords: Radiotherapy, Adaptive radiotherapy, Dose tracking, Dose mapping, Dose accumulation, Dose
accumulation accuracy, Deformable image registration, Non-rigid image registration, Protons

Background

The patient geometry can change significantly between
fractions during radiotherapy treatments. This motivates
the use of image sets to monitor the treatment progress
and to serve as basis for optional re-planning to better
fulfil the treatment objectives.
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The ideal monitoring scenario would be to score dose
for each individual tissue part, or cell, throughout all de-
livered treatment fractions. The closest realisation of
such a scenario is to calculate dose on images taken for
each treatment occasion, and use deformable image
registration (DIR) to map and accumulate the dose con-
tributions onto a representative, single image dataset [1].
Such dose distributions can be compared with the
intended, planned dose distribution to provide a basis
for corrective interventions in adaptive radiotherapy.
The accuracy of the image registration will govern the
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accuracy of the mapped dose, and hence the relevance
of the corrections. The validity of the accumulated dose,
due to the image registration uncertainty, was recently
debated by Schultheiss and Tomé [2]. It is therefore of
fundamental interest to determine the accuracy require-
ments of the image registration process, separate from
other uncertainties, in particular with regards to the ac-
curacy of the quantities derived from the finally mapped
dose.

The input to the registration also contains uncertain-
ties, e.g. image noise and uncertain segmentations.
The registration uncertainty can be considered as
uncorrelated to other treatment uncertainties such as
organ motion effects or dose calculation uncertainties,
and can thus be investigated separately. There exists a
plethora of DIR algorithms in the literature, see e.g. [3,4]
for a review of available methods. Studies of the accur-
acy of different DIR algorithms applied to different body
sites exist [5,6] with reported average errors in the range
of 1-5 mm. The accuracy of dose mapping has also been
studied explicitly by several authors; Rosu et al. [7] in-
vestigated dose grid resolution effects, Salguero et al. [8]
utilised the image registration inverse inconsistency and
found a maximum dose mapping uncertainty of >30% of
the prescription dose for a lung patient, Yan et al. [9] re-
lated the lack of mass conservation in the registration to
the dose uncertainty, Hub et al. [10] estimated the dose
uncertainty from the registration parameter uncertainty
and Murphy et al. [11] developed a method to sample
image registration errors and demonstrated their effect
on the mapped dose.

The aim of this study is to develop a methodology for
determining the accuracy requirements for the use of
deformable image registration as a basis for dose accu-
mulation in fractionated radiotherapy. For this purpose
we developed a simulation framework for dose accumu-
lation where the uncertainty of the calculated treatment
outcome (represented as dose, or as dose response de-
termined with a biological models) as a function of the
registration uncertainty could be investigated. The dosi-
metric impact of the registration uncertainty on the en-
tire fractionated treatment has been studied by Risholm
et al. [12] who presented the uncertainty of the total
physical dose for a single estimated registration uncer-
tainty, while we study how the final dose and the related
response would vary with the registration uncertainty.

We apply the framework to a hypofractionated treat-
ment of the prostate with spot scanned protons where a
“plan of the day” is assumed to be tailored to the CTV
for each individual fraction. The clinical importance of
dose accumulation for prostate treatments [13] was
investigated in a recent publication by Wen et al. We
hypothesise that the sensitivity to dose mapping uncer-
tainty increases with steeper dose gradients and
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therefore we use dose distributions from two different
spot sizes, one based on measurements at the local clinic
and one with smaller spot sizes producing a sharper and
less forgiving penumbra. We also investigate the accur-
acy requirement versus the required size of the planning
margin used for construction of the planning target vol-
ume (PTV) from the clinical target volume (CTV).

Methods

The impact of the registration uncertainty on the accu-
mulated dose, and its estimated response, can be studied
by adding known uncertainties to the registrations used
in mapping the deformations. The simulations mimic a
clinical workflow where a “plan of the day” is tailored to
the actual position of the CTV for the individual frac-
tions. The total accumulated effect, i.e. the estimated re-
sponse for the dose mapped from all fractions to a fixed
reference geometry is scored for various degree of regis-
tration uncertainties. As we are specifically interested in
the effects of the registration uncertainty we assume that
the patient is imaged and setup without errors at each
fraction. According to the van Herk margin scheme [14]
this means that we simulate a situation yielding only the
random contribution from DIR based dose mapping to
the CTV to PTV margin. In a real clinical situation also
other sources of uncertainty must be considered. In sec-
tion A we describe the simulation framework and the
modelling of the image registration uncertainty, and in
section B we apply the uncertainty model to a
hypofractionated prostate treatment with spot scanned
protons.

A. Simulation of a fractionated treatment with dose
mapping uncertainties

A “plan of the day” is prepared for each of the N treat-
ment fractions, and the fraction dose is mapped to a ref-
erence (fixed) image set I& for evaluation of the
cumulative radiation effect, see Figure 1. For each frac-

tion i a moving image set 1(;2 is acquired, and the deliv-

ered fraction dose d&) for fraction i is assumed to be
calculated based on Ig\i,[) It is further assumed that
through the use of DIR, the transformation TO(r) that
(@)

best align I); with Iz can be determined so that each

point r in /p is mapped to a corresponding point in 11(\2
by T and by means of interpolation in d1<\£1>’ the dose is

mapped from [ 1(\5[) to Ir through
d (r) = di} (19(n)) (1)

to enable estimation of accumulated dose for all frac-
tions through
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Clinical workflow

Acquire fraction images,
design the “plan-of-the-
day” and calculate the dose
distribution for the

fraction

Register the image dataset
acquired for the fraction to
the fixed dataset.

The fraction dose is mapped to

the fixed geometry and the total
dose and the total radiation -
effect is accumulated.

Evaluate the total radiation
effect of the complete
treatment.

Figure 1 Simulated clinical workflow. The flow chart to the right shows how the clinical workflow, listed to the left, is simulated. The fraction
dose is calculated on a randomly deformed virtual patient model for which the exact image registration to the fixed geometry /¢ is known. A
registration uncertainty can be added (the red part of the flow chart), before the dose is mapped to Ir where the radiation effect is accumulated.
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The dose distribution d@ (r) will vary from fraction to
fraction because of organ motion and the “plan of the
day” approach. We adopt a view where we with a given
uncertainty can track the position of a tissue element at
all treatments and accumulate the radiobiological effect
fraction by fraction. The Dg(r) then becomes a stochastic
quantity.

The resulting radiobiological effect was modelled
based on the LQ-model [15]. The 4D dose distribution
is thereby converted into a 3D equivalent fraction dose

dp'(r) [16], calculated as the fraction dose giving the
equivalent total radiobiological effect, Sg(r), by solving
for di(r) from

=

e(r) = [ [exp(-ady’ (r)-pay’ (1)?)

= [ exp (—(xd;q (l') _/),dle:q (r)Z) ] :

(3)

Il
—

The total equivalent dose, Dil(r) = Ndp'(r) was used
for analysis of the treatment DVHs. The tumour control
probability, TCP, was calculated directly from Sg(r), c.f.
[17,18]. The normal tissue complication probability,
NTCP, was calculated using the Lyman model [19] with
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parameters from Burman et al [20] and Emami et al
[21]. Also the equivalent uniform dose, EUD [22], was
calculated from Dgl.

Modelling the image registration uncertainty
The transformation T®(r) between the fixed image I

and the moving image 1&) , used by the dose mapping
procedure in equation (1), was modelled through

TO(r) = TV (x) + TV (r) (4)

where T(()i) is the true transformation, and the transform-
ation error T{) models the registration uncertainty. Nei-

ther T((]i) or T are in general known for a clinical
situation and thus T have to be treated as a stochastic
quantity for which we assume that <Tg> (r)) = 0. Regis-
tration algorithms apply various regularisation tech-
niques to produce a well behaved and physically realistic
transformation. Clearly, there is a local correlation of the
error for points close together whereas for points further
apart the error will be more uncorrelated. In modelling
of T\ this is mimicked by sampling uncorrelated errors
at a sparse grid of control points which by means of a
3D cubic B-Spline interpolation is applied to the denser
dose grid. The registration deviation amplitudes is sam-
pled at the control points, independently for each coord-
inate according to a multinormal distribution with zero
mean and standard deviation ¢.. A low resolution of the
control points will produce a slowly varying vector field
and thus mimic a high degree of regularisation and vice
versa for a high resolution of the control points.

Registration algorithms are often validated using land-
marks where the distances between known displace-
ments of the landmarks and those calculated by the
algorithm, which in our case is equivalent to the abso-
lute registration error |T§i)(r)’, are compared. The rela-
tionship between the standard deviation of the control
point distribution, ¢,, and the mean absolute registration
error, <’Tg“)(r)|>7 can be calculated using the B-Spline
interpolation coefficients (independent of the B-Spline
resolution) and is found to be

(ITe[)~0.534 oe (5)

B. Application of the simulation framework to a virtual
prostate patient

The virtual patient model

The framework described in section A require a patient
geometry, / &), and its deformation for every fraction T(()i>.
A single patient instance is defined as a patient with a
unique geometry per fraction. In the simulation we used
ten different patient instances for evaluation of each
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parameter combination. A male pelvic virtual patient
was for this purpose constructed from average data for
15 prostate patients treated in the supine position, see
Figure 2. The prostate was modelled as a sphere with ra-
dius rcty = 2.5 cm located at 20 cm depth and the blad-
der as an ellipsoid with radii 3.0 cm, 4.0 cm and 2.5 cm
in the lateral, superior-inferior and axial directions, re-
spectively, with a concave intrusion from the presence of
the prostate. The rectum was modelled by a curved cy-
linder with outer radius 1.4 cm and length 10.0 cm with
wall thickness 0.4 c¢m [23]. Other anatomical details,
such as the femoral heads, were not included since they
are in principle uncorrelated with the image registration
dose mapping effects for the prostate, bladder and rec-
tum regions.

The prostate is assumed to be incompressible and
change location (but not shape) as the rectum and blad-
der change filling and shape. In prostate radiotherapy
treatment it is common to also irradiate the lower parts
of the seminal vesicles to the same dose as the prostate.
The combined volume, prostate and lower parts of the
vesicles, will constitute a rather convex volume which
we for simplicity model as a sphere shaped CTV. We
sample the displacement of the prostate centre for each

fraction, vg)T\,, according to a multinormal distribution
with the standard deviations 0.4, 0.1 and 0.4 c¢cm in the
anterior-posterior, lateral and superior-inferior direc-
tions, respectively, consistent with the literature [24].
The fixed geometry Iy into which the radiation effect is
accumulated, is simply chosen to be the one with zero
displacement of the prostate, cf. Figure 2a.

A simple tissue deformation model was used to con-
struct the true moving geometry / 1(\’,[) from Iz where the
tissue displacement outside the prostate in I is expo-
nentially relaxed with the squared distance from the
prostate edge according to

2
i i i ri-r
T(()) (v(C)TV,r> = V(C>Tv.exp —k~M |r| > rerv,
[vervl

(6)

where T, is the local displacement at position r. The re-
laxation parameter k was set to 0.1 to give reasonable
volume differences in the rectum. The tissue displace-
ment according to equation (6) for a prostate displace-
ment ’Vg)Tv‘ = 0.5 cm and k = 0.1 is shown in Figure 3.
The virtual patient is shown for two prostate displace-
ments in Figure 2b and c¢ where the rectum and bladder
are deformed according to the deformation model in
equation (6). The model does not assume anything
about the reasons why the prostate has moved, ie. the
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Figure 2 The virtual patient and its deformation. The patient position and the coordinate system are indicated in the top left corner. (a) 3D
view of the virtual patient with the centre of the CTV at the origin. The black arrows indicate the direction of the two incident scanned proton
beams. (b) A slice at x=0.0 cm of the virtual patient in which the prostate CTV has moved 0.5 cm versus the reference in (a) in the negative
y-direction (Anterior-Posterior) causing an intrusion into the bladder and an expansion of the rectum. (c) The CTV has moved 0.5 cm in the
positive y-direction compressing the rectum and decreasing the bladder intrusion.

motion can be seen as a consequence of the filling in the

- rectum or the bladder.

[Tol cm The dose grid resolution was set to 0.1 cm while two
051 ' different grid sizes, 1.0 cm and 3.0 cm, was used for the
04f I<rery It > rery control points in the registration error. Analysis of all

1 T(r), ie. the patient model and the registration error,

0.3} i showed values of the Jacobian determinant, J(T®(r), r),

ozl i in the interval [0.4, 2.0] for the lower resolution indicat-
i ing an inverse consistent transform without folds or

0.1¢ i tears since J>0. The T¥(r) produced using the higher
- : ! : - : = Position (cm) control point resolution included small regions with

negative values of the J for 0. > 0.5 cm indicating a trans-
form that is not well regularised. It is desirable that the
accumulated dose is independent of the choice of refer-

rerv

Figure 3 Tissue displacement model. The absolute value of the
tissue displacement, |Ty|, as a function of the distance |r| from the

prostate centre, when a prostate with radius 2.5 cm is assumed to ence image /¢ and this requires that /> 0, which is not in
be displaced 0.5 cm. Inside the prostate, i.e. |r| < rery, the general guaranteed by registration algorithms. The
displacement is constant. Outside the CTV, ie. [f| > reqy, the resulting dose mapping uncertainty was very similar for

displacement decreases exponentially and vanishes far from the

orostate both resolutions but slightly more sensitive with respect

to the image registration uncertainty for the 3.0 cm
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resolution. We have therefore concentrated on results
for the 3.0 cm resolution.

Generation of treatment plans for simulation

The simulated treatments were assumed to be delivered
with two opposed, scanned proton beams, indicated by
the arrows in Figure 2a, aiming for a homogenous target
dose.

The PTV was constructed by adding a margin m iso-
tropically around the CTV.

Clinically relevant planning objectives were chosen
from literature values for intermediate risk patients
for radiobiological evaluation of the prostate [25], see
Table 1, to optimise the spot weights and thus shape the
proton dose distribution. Additionally, an artificial OAR
was created as a spherical shell around the PTV to sup-
press the normal tissue dose. The target dose prescrip-
tion was chosen to give a TCP of 80% since the TCP
curve is steep at that dose level and thus the TCP should
be susceptible to dose mapping uncertainties. However,
because of the suggested low «/f there is a trend to-
wards applying hypofractionated treatments, see e.g.
Ritter [26]. Therefore, an aggressive hypofractionation
scheme of 6.7 Gy x 5fx still aiming for a TCP of 80%
were chosen with the OAR planning objectives from
Isacsson et al. [27] scaled with the new prescription
dose. Zavgorodni [28] noted that it might be important
to take the variable fraction dose into account, as in
equation (3), when accumulating the dose for normal
tissue and tumours with low a/f, such as the prostate,
and for hypofractionated treatments.

The “plan of the day” treatment scenario described
above requires a tailored dose distribution for each tar-

get position for all patient instances, i.e. dii,[) in equation
(1). To save computation time and make the result less
dependent of the intrinsic details of the optimiser we
displace the dose distribution according to the fraction
specific CTV displacement. This results in one optimisa-
tion per margin size and spot size regimen.

The scanned proton dose distribution was calculated
using an in-house pencil beam algorithm with the depth
dose and lateral scattering calculated according to

Table 1 Summary of the treatment planning objectives
and the radiobiological parameters used in the
evaluation

ROI alp

v N/A 1.5

PTV Minimise V(D<33.0 Gy) N/A
Minimise V(D>34.7 Gy)

Rectum Minimise V(D>29.6 Gy) 30

Bladder Minimise V(D>29.6 Gy) 3.0
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Bortfeld [29] and Russell et al. [30], respectively. Our
normal beam model (NBM) parameters are based on
data from Kimstrand et al. [31]. Dose mapping in the
presence of a sharp penumbra will be sensitive to the
registration uncertainty, especially for targets where the
loss of dose coverage can greatly affect the outcome.
Dose distributions were therefore also generated
according to a sharp penumbra beam model (SBM)
whose in-air spot sizes are smaller and with zero diver-
gence thus producing a sharper penumbra. The spot
sizes of SBM correspond approximately to what modern
commercial proton machines can deliver, e.g. see [32].
The penumbra width is often reported as the distance
that the dose falls from 80% to 20% of the target dose
and here they were 1.16 and 0.88 cm for NBM and SBM
respectively in the directions perpendicular to the beam
axis. The spot size increase with treatment depth, due to
multiple scatter of the protons, and note that a shallower
target will have a sharper penumbra and thus more sen-
sitive to dose mapping uncertainties.

Results

The simulations were performed for ten different in-
stances of the virtual patient where each instant had its
own set of fraction specific CTV positions with corre-
sponding deformation fields. A single treatment simula-
tion, according to Figure 1, modelled the treatment of a
patient instance with the prescribed 6.7 Gy x 5fx. To en-
sure adequate statistics, each treatment simulation for
the same patient instance was repeated 40 times with
different sampled image registration T according to
equation (5) for each value of the margin m (0.0, 0.1, ...,
0.4 cm), image registration uncertainty (|T.|) (0.0, 0.05,
..,0.4 cm) and beam models. This resulted in a total of
400 treatment simulations per combination of m, (| T.|)
and beam model.

The DVH dependency on varying registration uncertainty
The spread of the calculated DVH curves for different
registration uncertainties is shown in Figure 4 including
the nominal DVH with no registration uncertainty as a
reference. As expected, the spread of the DVH curves
increases when the registration uncertainty (|T.|) in-
creases, c.f. the upper left panel with the rest in Figure 4.
For the CTV, use of a planning margin (m >0 cm) re-
duces the sensitivity to the registration uncertainty, and
the spread of the DVH curves decreases compared to
planning without margin (m=0 cm). Hence, an in-
creased target margin reduces the difference in dose be-
tween the target and surrounding normal tissue and
therefore reduces the effect of the registration uncer-
tainty. A sharper penumbra, i.e. created by the SBM in-
stead of the NBM, gives a slightly increased sensitivity to
registration uncertainty.
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Figure 4 DVHs from 5fx treatments simulations. DVHs resulting from 5fx treatment simulations for a single patient instance where each
individual plot contains 40 different treatment simulations using the same margin m, and beam model but different image registration
uncertainty distributions (sampled with the same (|Tc[)). The nominal DVHs without dose mapping uncertainty is drawn in black as a reference.
The Dgs and Vg levels, used in the analysis, are indicated with dashed lines in lower left panel.
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The spread of the DVHs for the OAR is less
dependent of the planning margin and the penumbra
width, although the overall dose level increases when
any of these two parameters increases. The dose tend to
be overestimated in the low dose region but
underestimated in high dose regions which is clearly
seen for the rectum and bladder in Figure 4. The reason
for the underestimation for the high dose is similar as
for the target dose, a dose mapping uncertainty is more
likely to lower the dose (and vice versa for the low dose
region).

The dose spread for the 95% of the CTV volume, Dy,
and the volume of the OARs that receives 80% of the
prescription dose, Vg, is chosen to further illustrate the
spread of the DVHs. The frequency distributions of
ADgs and AVy, expressed as the change in Dgs and Vgq
versus the nominal values are shown in Figure 5 for all
sampled patient instances. These results demonstrate
that the registration uncertainty causes a decreased value
of the calculated Dgs (ADys < 0%) for the target. It is evi-
dent that an increased planning margin will decrease the
impact of the dose mapping uncertainty. There is also a

trend that Vg, gets underestimated as the dose mapping
uncertainty increases.

The absolute values of ADys; and AVyg, that include
95% of all the DVH curves, ie. |ADgs|9s and |AVgo|os
are shown in Figure 6 for dose distributions from beam
models NMB and SBM. As expected, the |ADgs]|o5 is de-
creased when the planning margin is increased, or when
a wider penumbra (NBM) is used.

To obtain the DIR accuracy such that |ADgs|es is ap-
proximately 3% of the target dose, we found that the
registration uncertainty {|T.|) must be less than 0.25 cm
for NBM and SBM with SBM slightly more sensitive to
(|Te]). If a planning margin of 0.1 cm is used, the (|T,|)
registration uncertainty can be relaxed to 0.35 cm for
NBM and 0.30 cm for SBM.

The value of |AVg|gs was found to increase with in-
creasing (|T.|) and weakly with increasing margin, as
shown in the lower plots in Figure 6. The |AVgy|os5 value
was found to increase linearly as a function of (|T,|),
and was approximately 1% and 4% of the ROI volume
for {|T.|) = 0.1 cm and 0.35 c¢m, respectively. The |AVio|os
increases weakly with increased margin and the
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Figure 5 The Dys and Vg, distributions for different image registration uncertainties. The frequency distributions of the uncertainty in Dgs
(CTV) and Vgo (OARs), i.e. ADgs and AVg,, due to dose mapping uncertainty, for all ten instances of the patient, as a result of the image registration
uncertainties (|T.]) equal to 0.2 and 0.4 cm. The leftmost column shows the distribution for dose distributions using the NBM and no planning
margin, the middle column using a planning margin m and the right column the result for the dose distribution using the SBM.
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difference between NBM and SBM is small. The results
for the bladder |AVgo|9s were similar as the data found
for the rectum.

The uncertainty in simulated radiation response

The sensitivity of the calculated radiobiological out-
come quantities TCP and EUD for the CTV, and NTCP
and EUD for the OARs, were determined for each
treatment simulation. The chosen technique yields
very low nominal NTCP values, less than 2% for the
rectum and much smaller for the bladder. Accordingly,
the EUD uncertainties for the risk organs were also
very small, < 0.5 Gy.

The decrease in TCP versus the nominal without
dose mapping uncertainty, ATCPcty, was found to in-
crease with increasing registration uncertainty as
shown in Figure 7. These results are analogous to the
results of the DVH analysis in that the sensitivity to
the registration uncertainty is reduced with increasing
planning margin, and/or a shallower penumbra. The
ATCPcrv was below 1% for both beam models NBM
and SBM as long as the registration uncertainty (|T,|)
was less than 0.25 cm. The standard deviation of the

ATCPcrv (not shown) was small (<1%). A similar ana-
lysis of the AEUDcrv yielded quantitatively very simi-
lar results as for the ATCPcry.

The distribution of spatial dosimetric uncertainty with
varying registration uncertainty

In order to analyse the spatial effects of dose mapping
uncertainties we investigated how large volumes, V(ep)
that got local dose mapping uncertainty (relative to the
target prescription dose) larger than ep. The V(3%) is
shown in Figure 8 for the CTYV, rectum and bladder for
the beam models NBM and SBM. Without a planning
margin (m=0.0 cm), the V(3%) for the CTV vary be-
tween <1% and up to 10% as the (|T,|) vary between
0.2 ¢cm and 0.4 cm. If a margin is applied the V(3%)
decreases. The V(3%) vary in a logarithmic fashion
for both rectum and bladder with the registration
uncertainty. The use of a planning margin, or the lar-
ger spot sizes of NBM, result in larger V(3%) for the
OARs, because of increased dose burden, but with a
similar logarithmic behaviour with the registration
uncertainty.
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Discussion

We have in this work developed a general framework for
studying the influence image registration uncertainties
have on the accuracy of the accumulated dose in frac-
tionated radiotherapy. This framework was used to

estimate the impact of the dose mapping uncertainties
on the radiobiological quantities such as the TCP as well
as the DVH quantities Dgs and Vj, for spot scanned
proton therapy of the prostate. The results should be
considered together to yield a complete view of the



Tilly et al. BMC Medical Physics 2013, 13:2
http://www.biomedcentral.com/1756-6649/13/2

registration accuracy requirements. The relation be-
tween the TCP uncertainty and the DVH dose uncer-
tainty can be illustrated by assuming a homogenous
CTV dose where a 1% decrease would yield a 2.5% drop
in the TCP. The decrease in Dgs is not the same as a de-
creased homogenous dose but it seems reasonable to re-
quire at least a 3% accuracy in Dgs and Vgo. A |ADgs|9s5
of <3% would require that the mean absolute registra-
tion error should be better than approximately 0.25 and
0.20 cm for the larger and smaller spot size respectively,
whereas a ATCP requirement of <2% would require a
mean registration uncertainty better than 0.35 cm. An
added planning margin of 0.1 cm significantly reduces
the accuracy requirement to 0.35 cm and 0.30 cm for
the same Dgys requirement for the larger and smaller
spot size respectively. A |ADgs|9s <2% requirement
yields a registration uncertainty requirement of 0.2 cm
for the smaller spot size. A requirement of |AVgo|os
<3% would require a registration uncertainty of 0.25-
0.30 cm regardless of spot size and margin. If the 3%
requirement on Dgys is fulfilled for the intermediate
penumbra, the summed volume with dose mapping un-
certainty of more than 3%, in relative dose, V(3%), is
small for the CTV but up to 15-20% for the organ at
risks. The results indicate that the limiting accuracy re-
quirement is that for the Dgs. A relaxed penumbra, or
an increased target margin, decreases the uncertainty in
the CTV while it, due to the increased dose burden, in-
creases the uncertainties in the organs at risk. Jaffray
et al. [33] highlighted the need for accurate dose accu-
mulation for normal tissue and in that case the large
V(3%) might be of concern, especially when accumulat-
ing dose to serial organs sensitive to local dose effects.

The result of our particular simulations would to some
degree depend on the choices of treatment site, patient
geometry and deformation method. A shallower target
would sharpen the penumbra of the proton treatment and
increase the registration accuracy requirement. We assume
a registration algorithm without systematic errors and sto-
chastic, uncorrelated random deviations with a spatial fre-
quency resulting from regularisation such that the
registration error could be represented as a B-spline vector
field with normal distributed control points. We consider
these conditions for the registration uncertainty to be ra-
ther general for any regularised algorithm with random er-
rors, although its applicability for certain clinically used
DIR routines must be checked explicitly. The dosimetric
parameters are scored locally ROI by ROI making the con-
clusions less sensitive to the fact that the DIR uncertainty
in reality is not evenly distributed in space. Studies show
[5,6,34] that registration algorithms can in some cases, e.g.
lung and liver CT-CT registration, have a mean absolute
error close to 0.1 cm and thus fulfilling the 3% above stated
requirement for Dgs.
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The uncertainty in the calculation of TCP obviously
depends on the slope of the TCP sigmoid shape response
curve, ie. the yso value. The parameters in this work
were taken from the analysis of Cheung et al. [25] where
¥s0=2.2 (95% CI 1.1, 3.2). A higher ys5o would increase
the sensitivity to an image registration uncertainty and
thus increase ATCP. Roughly, using yso = 3.2 instead of
2.2 would raise ATCP from 3% to approximately 4.4%,
assuming the equivalent relative drop in dose when
starting from TCP = 80%.

Future research using the presented framework could
include other deformation models and other delivery
techniques such as rotational therapy with photons.

Conclusions
We developed a simulation framework that described the
total accumulated dose and the related response as a func-
tion of the deformable image registration uncertainty.
When applied to a spot scanned prostate treatment,
the accuracy of Dys on the accumulated dose is a limit-
ing requirement on the deformable image registration
when performing dose mapping. A required accuracy of
3% in Dgs would require a mean absolute image registra-
tion error uncertainty of 0.20 cm. By increasing the
CTV to PTV planning margin with 0.1 c¢cm, the mean
absolute error can be relaxed to 0.3 cm with respect to
the Dgs requirement. A few algorithms have reported ac-
curacy better than 0.2 ¢cm uncertainty for CT-CT regis-
trations and thus meet the above stated [5,6,34].
However, for more challenging registration problems,
such as multi-modality registrations, more development
might be required to improve the registration accuracy,
or to establish its accuracy as to define the dose map-
ping contribution to margin requirements in adaptive
radiotherapy.
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