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Abstract
Background: The present study determines the feasibility of generating an average arterial input function (Avg-AIF)
from a limited population of patients with neck nodal metastases to be used for pharmacokinetic modeling of dynamic
contrast-enhanced MRI (DCE-MRI) data in clinical trials of larger populations.

Methods: Twenty patients (mean age 50 years [range 27–77 years]) with neck nodal metastases underwent
pretreatment DCE-MRI studies with a temporal resolution of 3.75 to 7.5 sec on a 1.5T clinical MRI scanner. Eleven
individual AIFs (Ind-AIFs) met the criteria of expected enhancement pattern and were used to generate Avg-AIF. Tofts
model was used to calculate pharmacokinetic DCE-MRI parameters. Bland-Altman plots and paired Student t-tests were
used to describe significant differences between the pharmacokinetic parameters obtained from individual and average
AIFs.

Results: Ind-AIFs obtained from eleven patients were used to calculate the Avg-AIF. No overall significant difference
(bias) was observed for the transfer constant (Ktrans) measured with Ind-AIFs compared to Avg-AIF (p = 0.20 for region-
of-interest (ROI) analysis and p = 0.18 for histogram median analysis). Similarly, no overall significant difference was
observed for interstitial fluid space volume fraction (ve) measured with Ind-AIFs compared to Avg-AIF (p = 0.48 for ROI
analysis and p = 0.93 for histogram median analysis). However, the Bland-Altman plot suggests that as Ktrans increases,
the Ind-AIF estimates tend to become proportionally higher than the Avg-AIF estimates.

Conclusion: We found no statistically significant overall bias in Ktrans or ve estimates derived from Avg-AIF, generated
from a limited population, as compared with Ind-AIFs.

However, further study is needed to determine whether calibration is needed across the range of Ktrans. The Avg-AIF 
obtained from a limited population may be used for pharmacokinetic modeling of DCE-MRI data in larger population 
studies with neck nodal metastases. Further validation of the Avg-AIF approach with a larger population and in multiple 
regions is desirable.
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Background
A broad range of tumors [1-3] have been studied clinically
by dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) which monitors the passage of intrave-
nously administered Gadolinium (Gd) contrast agent
through tumor tissue. The rate at which the agent passes
from the intravascular space to the interstitial space
depends on several factors including tumor perfusion,
vascular density, and vascular permeability. MRI signal
changes depend on these factors and also the leakage
(interstitial) space. Tumors are considered to be leaky and
to have high perfusion. Three different approaches have
been reported for the analysis of the DCE-MRI time course
data: a qualitative approach, or subjective assessment of
the curve shape; semi-quantitative analysis of the signal
time course, such as uptake slope and maximum signal
intensity change; and quantitative analysis involving ana-
lytical pharmacokinetic modelling of the time course
data. The qualitative and semi-quantitative approaches
cannot be directly related to physiological parameters,
although they do provide clinically useful data. The quan-
titative approach has proven to be the most sophisticated
and provides physiological data [4-6]. Rijpkema et al [4]
performed quantitative analyses of DCE-MRI data in
eleven patients with tumors, of which six patients had
tumor in the head and neck region. Their initial analysis
presented the redistribution rate constant kep (= Ktrans/ve)
maps while the Ktrans (transfer constant) and ve (interstitial
fluid space volume fraction) maps could not be expressed
in absolute quantitation values due to the scaling factor
and were not shown. Kim et al [5] measured the AIF in
nine individuals and found the effects of transcytolemmal
water exchange to be an important factor in DCE-MRI
data analysis. Use of standardized quantitative methods
for analysis has been highly recommended so that DCE-
MRI data may be compared from different sites, platforms
and field strengths and be of widespread use, for example
in clinical trials assessing tumor response to therapy [7].

Quantitative analysis of the DCE-MRI data requires
knowledge of the arterial input function (AIF): the time-
dependent contrast agent concentration in the arterial
blood feeding the tissue of interest. The absolute accuracy
of the pharmacokinetic parameters Ktrans and ve depends
on the AIF accuracy [8]. The Ktrans and ve parameters are
clinically relevant and have been used in oncological
imaging for tumor detection and to evaluate response to
therapy [3,7]. DCE-MRI has become a useful tool also in
evaluating head and neck cancers, differentiating tumor
from non-tumor in the cervical lymph nodes or lym-
phoma from squamous cell carcinoma, assessing mandib-
ular invasion, and predicting response to therapy [3,4,6,9-
13]. The need for reliable measurements of pharmacoki-
netic parameters has been the impetus for accurate meas-
urement of AIFs in the carotid artery in head and neck

cancer patients [4,5]. However, obtaining individual AIFs
for each DCE-MRI study may not be possible in all
patients due to data acquisition constraints. This chal-
lenge can be overcome if a population-averaged AIF is
used [14]. Recent studies in cancer [14,15] have indicated
that the use of a high-temporal-resolution population-
based AIF allowed assessment of detailed physiological
information with a good degree of precision even when
individual AIF measurement was not possible. However,
the use of Avg-AIF for quantitative analysis of DCE-MRI
data in neck nodal metastases has not been tested so far.
In the present study, we determined the feasibility of
building an average AIF obtained from a limited popula-
tion of head and neck cancer patients with neck nodal
metastases for pharmacokinetic modeling of DCE-MRI
data in studies of larger populations, e.g. in clinical trials
to examine the effects of treatment on DCE-MRI parame-
ters.

Methods
Patients
DCE-MRI was performed in twenty head and neck cancer
patients (mean patient age 50 years [range 27–77 years];
17 males, 3 females, with nodal disease [size >1 cc]; 2
patients stage III and 18 stage IV) before chemo-radiation
therapy or surgery. The institutional review board granted
exempt status for this retrospective study with a waiver of
informed consent for two patients who underwent DCE-
MRI between April and September 2005. From February,
2006 to October, 2007 DCE-MRI was performed as part of
an ongoing National Institutes of Health (NIH) study
investigating the use of MR imaging in patients with head
and neck cancers; 18 patients gave informed consent for
their participation in the institutional review board-
approved NIH study. The study was also compliant with
the Health Insurance Portability and Accountability Act.
Although 20 patients were recruited, only 11 had AIFs that
were included for averaging to produce a population AIF.

MRI Data acquisition
MRI data were acquired on a 1.5 Tesla GE Excite scanner
(General Electric, Milwaukee, WI) with a 4 channel neu-
rovascular phased-array coil (MRI Devices Corporation,
Gainesville, FL) for signal reception and a body coil for
transmission. The study consisted of MR imaging covering
the entire neck. MRI data was acquired with spatial satura-
tion to minimize the flow effects on the MR measurement
in the arterial blood vessels. MR acquisition parameters
for the neck survey were as follows: rapid scout images,
multiplanar (axial, coronal and sagittal) T2-weighted, fat-
suppressed, fast-spin echo images (TR = 5000 ms, TE =
102 ms, averages = 2, slice thickness = 5.0 mm and gap =
2.5 mm), multi-planar T1-weighted images (TR = 675 ms,
TE = 8 ms, averages = 2, slice thickness = 5.0 mm and gap
= 2.5 mm). Standard T1- and T2-weighted imaging were
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followed by proton density MRI acquired (for the purpose
of determining the longitudinal relaxation rate constant
R1 for each DCE-MRI data point) in the axial plane (TR =
350 ms, TE = 2 ms with a 30° flip angle (α), 2 excitation,
15.63 kHz receive bandwidth, field of view [FOV], slice
location and thickness same as in the DCE-MRI scan [see
below] and a 256 × 128 matrix), followed by an axial T1-
weighted DCE-MRI scan and then post-contrast T1-
weighted images in axial and coronal planes. At the begin-
ning of the sixth image set (data point) of the DCE-MRI
scan, a bolus of 0.1 mmol/kg GdDTPA contrast agent
(Magnevist; Berlex Laboratories, Wayne, NJ, USA) was
delivered through an antecubital vein catheter at 2 cc/sec,
followed by a saline flush using an MR-compatible pro-
grammable power injector (Spectris; Medrad, Indianola,
PA, USA). DCE-MRI data were acquired using a 2D-fast
multi-phase spoiled gradient echo (FMSPGR) sequence.
The entire node was covered contiguously with 5–7-mm
thick slices, zero gap yielding 3–6 slices depending on the
size of the node with 3.75–7.5 sec temporal resolution.
Acquisition parameters included 9 ms TR, 2 ms TE, 30°
flip angle (α), 15.63 kHz receive bandwidth, 18–20-cm

field of view (FOV), 40–80 time course data points, and a
256 × 128 matrix sized zero filled to 256 × 256 during
image reconstruction.

DCE-MRI Data Analysis
Data were exported to a Windows PC and the pharmacok-
inetic analysis based on the Toft's model was done using
in-house software written to display and analyze data
using IDL windows version 6.0 (Research Systems, Boul-
der, CO, USA) [16]. To perform the above pharmacoki-
netic analysis using the Tofts model [16], a reliable AIF
(Cp(t)) is required. In all patients studied, the carotid
artery was visible in most of the image slices. To minimize
partial volume effects the image slice that contained the
central portion of the artery was used. A region of interest
(ROI) was placed within the carotid artery (Figure 1a) and
this allowed the direct measurement of the arterial input
function through monitoring of the changes in signal
intensity (and converting the data into concentration)
(Figure 1b). The signal intensity (S) of spoiled gradient
echo with contrast agent bolus injection is modeled

(a) A post-contrast axial MR image from a head and neck cancer patient extracted from the DCE-MRI scan showing bilateral nodal metastases (dashed white lines) in the neck and the right carotid artery (solid red line)Figure 1
(a) A post-contrast axial MR image from a head and neck cancer patient extracted from the DCE-MRI scan 
showing bilateral nodal metastases (dashed white lines) in the neck and the right carotid artery (solid red line). 
(b) An arterial input function (AIF) plot (plasma Gd-DTPA concentration time course). The data points were measured from 
the region of interest placed within the right carotid artery. The AIF wash-out phase was fitted with a bi-exponential decay 
function.
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according to Equation 1, assuming TE << T2 so that the
final exponential term can be taken as 1, [17]:

where α is the flip angle, TR is the repetition time, S0 is a
constant proportional to the proton density of the sam-
ple. Based on the method described by Parker et al [18], a
calibration curve was generated of signal intensity ratio of
T1-weighted image to proton density image as a function
of T1. The details of the phantom experiment are reported
by Wang et al [15]. The artery ROI values R1 for the DCE
image series were obtained from the calibration curve and
subsequently converted to Gd-DTPA concentrations. The
apparent longitudinal relaxation rate constant, R1 (= 1/
T1), is proportional to Cp (t) and is given by:

Where Cp(t) is the arterial plasma GdDTPA concentration
at time t, r1 is the contrast agent relaxivity; taken to be 4.1
sec-1(mmol/L)-1 at 1.5T [19], and R10 is the pre-contrast
R1. The derived Cp(t) time course was fitted with a bi-
exponential decay function in the wash-out phase [20] to
generate the AIF. The Ind-AIF's were inspected to deter-
mine whether they followed the "expected" contrast
enhancement pattern: enhancement during the early
phase followed by signal intensity attenuation. The resid-
ual (Sum of residual) and mean square error (MSE) were
used as a reference as well as visual inspection done by a
physicist. Ind-AIFs were excluded that clearly showed
large deviations from the above enhancement pattern
shown in Figure 1b (Sum of residual = 0.073; MSE =
0.325). By averaging the eleven individual AIFs (Ind-AIFs)
obtained from the carotid artery that satisfied the above
criteria, with peak height aligned, an average AIF (Avg-
AIF) was obtained. The average AIF was calculated using
the equation [16]:

Where D is the dose (mmole/kg), and amplitudes "a" are
normalized for unit dose (so that Cp is then known for any
size dose). For the parameters a1, a2, m1 and m2 Mean val-
ues are reported as Mean ± SE of the Mean in Table 1. The
SE variation show that the changes are large during the

initial spike (a) and then reduce to a small variation dur-
ing the wash out phase (m). This is consistent with previ-
ous studies [14,15].

Quantitative DCE-MRI analyses of the tumor tissue time
course data was done in all the patients for the ROI as well
as each pixel within the ROI using histogram analyses
[15]. The latter calculates the pixel Ktrans and ve and the
median values of these parameters.

For the tumor tissue time course data, ROI were manually
drawn by an experienced neuro-radiologist outlining the
contrast-enhanced tumor and were used for signal inten-
sity measurements. All the slices containing tumor were
outlined and analyzed. The model fitted the tissue con-
trast agent concentration, Ct(t), time course for the extrac-
tion of the Ktrans and ve parameters from the whole tumor
(multiple slices), as shown in the following Kety-Schmidt
equation:

The term that includes plasma volume fraction (vp),
vpCp(t), was ignored on the right side of the equation. As
shown by Li et al [21] there is sufficient contrast agent
extravasation from plasma to interstitium tumor tissue
such that Ktrans and veparameters are adequate for analy-
ses. The exclusion of vp may lead to errors in situations
when there is less contrast extravasation (such as Ktrans <
0.001 min-1). For each DCE-MRI data set, only the bi-
exponential function-fitted AIF wash-out phase was used
for Ct(t) curve fitting with time zero in Eq. [4] set as the
time of AIF peak amplitude. This is due to the fact that the
arrival of the bolus precedes the apparent rise of tumor tis-
sue signal intensity, defined as signal intensity rising more
than one standard deviation (SD) of the signal intensities
of the five pre-contrast injection baseline data points.

A paired Student t test was used to evaluate differences in
pharmacokinetic parameters resulting from the use of
Ind- and Avg-AIFs. Bland-Altman plots [22] were used to
explore possible trends across the range of observed ROI
means for each parameter. An example of a single slice
was plotted to show the pixel-by-pixel variation between
the two estimates within the slice.
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Table 1: Parameter values for the average AIF build from the eleven individual AIF's

Parameters a1 (kg/liter) a2 (kg/liter) m1 (min-1) m2 (min-1)

Mean 204.07 58.02 16.18 1.31
SE 61.53 17.49 4.87 0.39
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Results
In twenty patients ROI's were drawn in the carotid artery
for calculation of the AIF and 55% (eleven patients) had
AIF that met the expected pattern of enhancement. The
data from these eleven patients was used to build the
Average-AIF. The bi-exponential function-fitted Average-
AIF with 2 cc/sec contrast agent injection rate is shown in
Figure 2. Bland-Altman plots show the values of ROI Ktrans

(Figure 3a) and ROI ve (Figure 3b) measured from phar-
macokinetic modeling using both Ind-AIFs and the Avg-
AIF for the eleven head and neck cancer patient's nodal
tumor tissue. For each ROI, the difference between the
two estimates is plotted against the mean of the two esti-
mates. Reference lines show the average difference (bias)
and limits of agreement (+/- two SD). There were no sta-
tistically significant bias between Ktrans values derived with
Ind-AIFs and those derived with the Avg-AIF (Table 2; p =
0.20 for ROI Ktrans and 0.18 for histogram median Ktrans;
paired t test). Similar results were obtained for the ve
parameter (Table 2). In order to show how Avg-AIF per-
forms on a pixel-by-pixel basis, Figure 4 displays the rep-
resentative graph for a patient with pixel Ktrans values
within the tumor tissue ROI obtained with the Avg-AIF
plotted against those obtained with the Ind-AIF. The plot
shows significant linear correlation (p < 0.0001) and a
proportional divergence from the identity reference line.
The slope value for linear regression through the origin
was 1.35. Similar results were obtained from ROIs for the
other 10 patients with reliable Ind-AIF measurements.
This indicates that the use of Avg-AIF works equally well
for both ROI- and pixel-wise analyses.

Discussion
DCE-MRI studies have shown great promise in several
aspects of head and neck cancer management, including
differential diagnosis and assessment of treatment
response [3]. To date, the general methods of analysis of
the data have ranged from qualitative to quantitative anal-
ysis [3-6,9-12]. Quantitative modeling requires accurate
AIF measurements [7]. Although it would be ideal to
obtain AIFs from individual patients, which is often feasi-
ble, in many settings it is not possible to perform an AIF
measurement reliably either due to data acquisition con-
straints or lack of a suitable artery within the imaging FOV
from which to obtain an AIF [14,15]. Parker et al sug-
gested that in cases where a reliable AIF was not measured,
a high-resolution population-averaged AIF can improve
the reproducibility of parameters obtained using kinetic-
modelling of DCE-MRI data and that in general only
small changes in accuracy can be expected [14]. This study
was performed on twenty three patients with cancer in the
abdomen [14]. The authors commented that use of the
Avg-AIF approach could be a useful alternative to the use
of Ind-AIFs, especially for quantitative treatment studies
where changes in microvascular properties are more
important than the absolute values [14]. Our group has
recently published the use of limited population based
Avg-AIF for DCE-MRI data analysis in osteosarcomas [15].
In the present study we focus the use of the same principle
on a different anatomic site with cancer i.e. head and
neck. These preliminary studies can provide basis for
large, validation studies and future application in clinical
trials which use DCE-MRI parameters as non-invasive MR
biomarkers. There is a need for widespread use of quanti-
tative analysis of DCE-MRI data in order to compare and
evaluate studies performed at different field strengths
which would be independent of instrument platform and
acquisition parameters.

Different groups have proposed various methods for ana-
lyzing DCE-MRI data for scenarios in which Ind- or Avg-
AIFs cannot be obtained easily. These techniques may be
an option for analysis of DCE-MRI data after appropriate
validation or comparisons with standard methods. Riab-
kov et al [23] estimated the kinetic parameters without
input functions using multichannel blind identification
methods and iterative quadratic maximum-likelihood
(IQML) gave the most accurate estimates. Yankeelov et al
[24] and Walker-Samuel et al [25,26] have proposed a
method that compares the tissue of interest (TOI) curve
shape to that of a reference region (RR), thereby eliminat-
ing the need for direct AIF measurements when a reliable
AIF is not obtainable. Yang et al [27] proposed the dou-
ble-reference-tissue method, which assumes that the AIFs
of the two reference tissues have the same shape. The ele-
gant simulations used in their study need to be tested in
more complicated tissues, such as tumor tissue.

Average AIF obtained from eleven individually sampled AIFsFigure 2
Average AIF obtained from eleven individually sam-
pled AIFs.
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Bland-Altman plots showing variability of the differences between parameter estimates obtained by the two methodsFigure 3
Bland-Altman plots showing variability of the differences between parameter estimates obtained by the two 
methods. Horizontal axes are means and vertical axes are the differences of the paired estimates. Dotted references lines 
show bias and limits of agreement (mean of differences +/- 2 SD of differences). (a) Ktrans Ind-AIF – KtransAvg-AIF (0.124 +/- 
.448); (b) ve Ind-AIF – veAvg-AIF (0.088 +/- .600).
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Clinical requirements for diagnosis often dictate large
imaging spatial coverage and high image resolution,
which result in poor temporal resolution for DCE-MRI
acquisition. Roberts et al [28] showed that AIFs sampled
at low temporal resolution introduced an unpredictable
degree of error in the quantitative analysis. In such cases
the use of Avg-AIF obtained from acquisitions with higher
temporal resolution would be the method of choice. In
the present study, the Avg-AIF was obtained from DCE-

MR images of sufficient temporal resolution, and there-
fore it may be used to analyze DCE-MRI data that were
acquired with poorer temporal resolution but otherwise
with the same contrast injection set up, including dose,
injection site and injection rate. In the present study ROIs
were drawn on all arteries visible on the MR images but
reliable AIF measurement was obtained only from the sec-
tion that contained the central portion of the artery. This
was because other sections showed small vessels contain-

Scatter plot of pixel Ktrans values obtained from single-image slice pharmacokinetic modeling analyses of a patient's DCE-MRI dataFigure 4
Scatter plot of pixel Ktrans values obtained from single-image slice pharmacokinetic modeling analyses of a 
patient's DCE-MRI data. The Ktransextracted with the average AIF (Avg-AIF) approach are plotted against those extracted 
with the individually measured AIF (Ind-AIF) approach. Both identity line and regression line are shown. The slope of the linear 
regression is 1.35.

Table 2: DCE-MRI Parameters Ktrans and ve calculated with Ind-AIF and Avg-AIF

AIF Ind-AIF* Avg-AIF* Difference between Ind-AIF and Avg-AIF based parameter estimates

ROI Ktrans (min-1) 0.35 ± 0.29 0.23 ± 0.12 0.12 ± 0.08a

Histogram Median Ktrans (min-1) 0.36 ± 0.29 0.22 ± 0.11 0.14 ± 0.09b

ROI ve 0.52 ± 0.51 0.43 ± 0.39 0.09 ± 0.06c

Histogram Median ve 0.37 ± 0.22 0.38 ± 0.19 0.01 ± 0.007d

*Mean ± SD; Student's paired t-test for Ktrans and ve values obtained with Ind-AIF and Avg-AIF; Differences between Ind-and Avg-based parameter 
estimates: aP = 0.20, bP = 0.18, cP = 0.48, dP = 0.93.
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ing only a small number of pixels, leading to a partial vol-
ume effect, or because other sections showed the
bifurcation of the common carotid artery. Care was taken
by the physicist during the selection process of Ind-AIFs so
as to not pre-determine the outcome of the Avg-AIF, but
rather to remove patient data that largely deviated from
the expected contrast enhancement pattern.

A bi-exponential function was used for data analysis. Con-
sistent use of this function for AIF curve fitting will not
introduce systematic errors in longitudinal comparisons
of changes in pharmacokinetic parameters caused by
treatment. The use of an Avg-AIF implies that resulting
parameter estimates will be higher than Ind-AIF estimates
for some cases and lower for others. However, there is
added benefit in the implicit gain in precision of the
pooled or Avg-AIF and the possibility of parameter esti-
mation when Ind-AIFs are not available. Although the
sample size was small, other studies of cancers such as sar-
coma have reported similar findings for Avg-AIF from
small population [15]. Further validation of the Avg-AIF
approach with a larger population and in multiple regions
is desirable.

Conclusion
In conclusion, this study shows that parameter estimates
derived from an Avg-AIF, generated from a limited popu-
lation, yield similar results to estimates derived from Ind-
AIFs. The Avg-AIF may be useful for pharmacokinetic
modeling of DCE-MRI data in studies of larger popula-
tions of patients with neck nodal metastases where precise
Ind-AIFs may not be available for all cases, e.g., in clinical
trials to examine the effects of drugs on DCE-MRI param-
eters.
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