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Abstract

Background: Analyzing and monitoring uterine contractions during pregnancy is relevant to the field of
reproductive health assessment. Its clinical importance is grounded in the need to reliably predict the onset of labor
at term and pre-term. Preterm births can cause health problems or even be fatal for the fetus. Currently, there are no
objective methods for consistently predicting the onset of labor based on sensing of the mechanical or
electrophysiological aspects of uterine contractions. Therefore, modeling uterine contractions could help to better
interpret such measurements and to develop more accurate methods for predicting labor. In this work, we develop a
multiscale forward electromagnetic model of myometrial contractions during pregnancy. In particular, we introduce a
model of myometrial current source densities and compute its magnetic field and action potential at the abdominal
surface, using Maxwell’s equations and a four-compartment volume conductor geometry. To model the current
source density at the myometrium we use a bidomain approach. We consider a modified version of the Fitzhugh-
Nagumo (FHN) equation for modeling ionic currents in each myocyte, assuming a plateau-type transmembrane
potential, and we incorporate the anisotropic nature of the uterus by designing conductivity-tensor fields.

Results: We illustrate our modeling approach considering a spherical uterus and one pacemaker located in the
fundus. We obtained a travelling transmembrane potential depolarizing from −56 mV to −16 mV and an average
potential in the plateau area of −25 mV with a duration, before hyperpolarization, of 35 s, which is a good
approximation with respect to the average recorded transmembrane potentials at term reported in the technical
literature. Similarly, the percentage of myometrial cells contracting as a function of time had the same symmetric
properties and duration as the intrauterine pressure waveforms of a pregnant human myometrium at term.

Conclusions: We introduced a multiscale modeling approach of uterine contractions which allows for incorporating
electrophysiological and anatomical knowledge of the myometrium jointly. Our results are in good agreement with
the values reported in the experimental technical literature, and these are potentially important as a tool for helping in
the characterization of contractions and for predicting labor using magnetomyography (MMG) and
electromyography (EMG).

Background
Modeling themyometrium contractility during pregnancy
is of clinical importance, since it can aid in understand-
ing the mechanism of labor, and, thus, it can help in
monitoring the health of both the fetus and the mother.
The occurrence of labor is in general accompanied by
the appearance of periodic contractions which increase
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the intrauterine pressure to the point that cervix dilata-
tion is manifested [1]. However, from clinical experi-
ences, not all uterine contractions are efficient, i.e., lead
to labor. Term labor is expected to occur after the 37th
week of pregnancy, but in the last decade the incidence
of preterm labor has increased significantly (12% of all
births). Preterm birth can cause health problems or even
be fatal for the fetus if it happens too early, and, at the same
time, it imposes significant financial burdens on health
care systems [2]. Therefore, it becomes critical to better
understand the mechanism of bioreproduction which, as
a consequence, would allow for the development of more
effective forms of therapy that might help to predict labor
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and control the occurrence of labor. In the following we
will discuss briefly the uterine microanatomy, previous
contractions models, and our modeling approach.

Uterine microanatomy
The adult uterus is a thick walled, hollow, muscular organ
formed by three layers: the external serous perimetrium,
the myometrium, and the inner mucous endometrium [1].
The non-pregnant uterus wall thickness is approximately
15 mm to 20 mm, and during pregnancy the uterine
wall becomes thin with values at the 39th week of preg-
nancy ranging from 7.4 ± 1.8 mm at the low anterior
wall (lower segment) at the bladder interface, to 10.06
± 1.9 mm at the posterior wall [3]. The myometrium
is responsible for contractions, and it is formed by fas-
ciculi which are comprised of sheet-like and cylindrical
bundles of myocytes embedded in a connective tissue
matrix [4]. The myocytes in a cylindrical bundle contract,
thus shortening the smooth tissue and increasing uterus
wall tension, hence increasing the intrauterine pressure.
Figure 1 illustrates the microanatomy of the pregnant
human myometrium.
The uterine microanatomy is consistent with action

potential propagation [4]: (i) myocytes are densely packed
within a bundle, (ii) bundles are contiguous within a fasci-
culus, and (iii) fasciculi are contiguous via communicating
bridges formed with myocytes. In addition, the uterine
changes during gestation are accompanied by the forma-
tion of gap junctions, which are one of the mechanisms
for transmitting of contractile activity from cell to cell in
a coordinated manner [1,4]. The structure of the fasicu-
lata within the uterus has not yet been well defined, but
generally it makes the propagation of the action potential
anisotropic [5,6].

Uterine contraction models
Uterine contractions can be described by their mechan-
ical and electrophysiological aspects. A mechanical

contraction is manifested as a result of the excitation as
well as the propagation of electrical activities in the uter-
ine muscle, and appears in the form of an intrauterine
pressure increase. Existing models approach the problem
separately at the organ level [7-12] or at the cellular level
[13-17].
At the organ level, the models presented in [7-11] focus

on predicting the contractile forces that closely resem-
ble clinical measurements of normal intrauterine pres-
sure during contractions in labor, and, more recently, the
action potential propagation. In [7], the authors assume
that the uterus is a hollow ovoid formed by discrete
contractile elements that propagate electrical impulses,
generate tension, and have defined contracting and refrac-
tory periods. The envisioned mechanism for intercellular
communication is based on action potential propagation,
which is simulated by using a discrete state model for each
cell. In [8], the authors revisit the model developed in [7]
and perform multiple experiments with different uterine
shapes, cell numbers, and initial distributions of active
and resting cells. In [9], the author uses a discrete state
model for combining action potential propagation and
intercellular calcium wave propagation, two mechanisms
of intercellular communication. However, in [7-9], math-
ematical and physical descriptions of the models are not
provided. In [11], the trajectories of growth and myome-
trial tension at the onset of labor are modelled using a
statistical modeling approach. The authors model the tra-
jectories of uterine wall thickness, volume, and tension
as functions of gestational age using a prolate ellipsoid
method, intrauterine pressure results from the literature,
and ultrasound measurements of the shape of the uterus
collected on 320 subjects. Regarding the electrical activ-
ity of uterine contractions, a model of myometrial action
potential propagation as measured by surface electrohys-
terography is proposed in [10]. The authors develop a
myometrium skin conduction model consisting of four
parrallel layers (myometrium,abdomen,fat, and skin), and

Figure 1 Diagram of microanatomy of pregnant humanmyometrium [4]. Red lines represent current flows.
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model the action potential using a Gamma probability
distribution. This model assumes that the electrical con-
ducitivity of the myometrium is isotropic and that the
abdominal curvature is negligible, thus making it suitable
to model the electrical potential in a limited area of the
abdominal surface. Recently, in [12], the authors model
the electrical propagation of action potential using a 3-
dimensional myometrium for different initial conditions
and stimuli. The authors use a reaction-difussion equation
coupled with a Fizhugh-Nagumo model of ionic currents
and consider a homogeneous isotropic myometrium.
At the cellular level, the models focus on predicting

the changes of ionic concentrations in the intracellular
and extracellular media during a contraction, and, as a
consequence, on modeling the transmembrane potential
evolution of a myocyte as a function of time. In [13,14]
a model is developed to simulate the complete process
of a single myometrial smooth muscle contraction, which
is initiated by depolarization. The model is based on the
electrophysiological properties of a myocyte and on the
cellular mechanisms that relate the rise in concentration
levels of intracellular ion calcium Ca2+ to stress produc-
tion. In [17], the authors model all known individual ionic
currents of myometrial smooth muscle close to labor and
combined them into a mathematical model of myometrial
action potential generation. The model is shown to suc-
cessfully mimic several recordings of spontaneous AP and
force in uterine smooth muscle.
In this work, we propose a multiscale forward elec-

tromagnetic model of human myometrial contractions
during pregnancy that jointly takes into account electro-
physiological and anatomical knowledge at the cellular,
tissue, and organ levels. Our model aims to help in the
characterization of contractions and the prediction of
labor using MMG [18] and EMG [19]. Here, we extend
our partial results presented in [20]. Figure 2 illustrates
the different levels considered in our modeling approach.
In particular, our approach is twofold: first, we model the

current source density at the myometrium, using models
of myocyte electrophysiological activity and anisotropic
conductivity, and second, we solve the forward electro-
magnetic problem, specifically, we compute the magnetic
field and the action potential at the abdominal sur-
face generated by the myometrial current-source density
using Maxwell’s equations subject to a volume conduc-
tor geometry. To model the current source density at the
myometrium we propose to apply a bidomain approach.
The bidomain equations are a set of reaction-diffusion
equations derived first for modeling the current sources
of the myocardium as a function of the cardiac-myocyte
transmembrane potential, and these equations proved to
be a successful approach to study the functioning of the
heart [21,22]. The diffusion part of the equations gov-
erns the spatial evolution of the transmembrane potential,
and the reaction part is given by the local ionic current
cell dynamics. Here we introduce a modified version of
the FitzHugh-Nagumo (FHN) equation for modeling ionic
currents in each myocyte. Though FHN does not con-
sider explicitly the Ca2+ dynamics, the simplicity of the
FHN model makes it an attractive candidate for model-
ing the propagation of depolarization waves in such large
2D and 3D simulations as the numerical examples pre-
sented in this work. We propose a general approach to
design the conductivity tensor orientation for any uterine
shape and estimate the conductivity tensor values in the
extracellular and intracellular domains, using Archie’s law
[23]. We illustrate our modeling approach using a spher-
ical, four-compartment volume conductor geometry. As
we elaborate later on, certain aspects of it stand as a fair
approximation of the volume conductor geometry when
performing MMGmeasurements.
The notational convention adopted in this paper is as

follows: italic font indicates a scalar quantity, as in a; low-
ercase boldface indicates a vector quantity, as in a, except
for vector fields used in Maxwell’s equations such as elec-
tric field E, magnetic field B, and current density J ; upper

Figure 2 Illustration of the proposedmodeling approach.
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case italic indicates a matrix quantity, as in A. The matrix
transpose is indicated by a superscript “T ” as in AT , and
the identity matrix of size n × n is denoted In. The set Sn
denotes the vector space of symmetric n×nmatrices, and
the spaces of nonnegative definite matrices and positive
definite matrices are denoted by Sn+ and Sn++, respectively.
The inner product and norm defined in the Euclidean
space are denoted by 〈·, ·〉 and ‖·‖, respectively.

Methods
In this section we discuss the electromagnetic source rep-
resentation of uterine contractions. We will introduce a
four-compartment volume conductor model formed by
an anisotropic bidomain myometrium and will present
the models for the extrauterine electrical potential, mag-
netic field, and myometrial current source density. Finally,
we will present a numerical example to illustrate our
modeling approach.

Volume conductor model
Figure 3 illustrates the four-compartment volume conduc-
tor geometry for our problem, where A represents the
abdominal cavity and ∂A the boundary surface defined by
the abdomen, M represents the myometrium, and ∂M
and ∂U are its external and internal boundary surfaces,
respectively. The volume denoted by U represents the
space filled with the amniotic fluid that exists between the
internal uterine wall ∂U and the boundary ∂F defined by

Figure 3 Representation of the four-compartment volume
conductor geometry and the forward electromagnetic problem
of uterine contractions.

the fetus volumeF . The vectors r and r′ indicate the posi-
tions of the observation point and source, respectively,
with respect to the main axis of reference.

Extrauterine magnetic field and electrical potential
The electromagnetic properties of uterine contractions
can be analized by solving a set of Maxwell’s equations
[24,25] subject to boundary conditions given by the vol-
ume conductor geometry. In general, in a passive non-
magnetic medium the total current density is the sum
of the ohmic volume current and the polarization cur-
rent, also known as the displacement current [24,25]. The
ohmic current is the result of ions flowing in the medium
and the displacement current is the result of a time vary-
ing electric field [24,25]. If the temporal variations of the
electric field and the magnetic field, i.e. low frequencies,
are small enough that the displacement current is very
small with respect to the ohmic current, then it is valid to
model the electromagnetic phenomena using the quasi-
static approximation of the Maxwell Equations. Under the
quasi-static approximation, changes in the sources that
generate the electromagnetic field affect all field quanti-
ties instantaneously in the whole domain, and the total
current density in the volume conductor geometry will be
the sum of ohmic currents only. Biolectromagnetic fields
vary slowly in time, with frequency components below
1KHz and with a spatial characteristic length scale several
times much larger than the volume conductor of inter-
est [26], i.e, much larger than the diameter of the uterus.
Hence, changes in the bioelectric sources affect the bio-
electromagnetic field in the volume conductor geometry
instantaneously, which justifies the use of the quasi-static
approximation of Maxwell’s equations [25,26]. Therefore,
the extrauterine magnetic field B(r, t) at a position r and
instant t is given as follows:

∇ × 1
μo

B(r, t) = J(r, t), (1)

whereμo is the permeability of free space and J (r, t) is the
total current density (in A/m2). J (r, t) is given by

J (r, t) = J s (r, t) + G (r)E (r, t) , (2)

where J s (r, t) is the uterine current density source and
G (r)E (r, t) is the conduction current density (or return
currents), as described by Ohm’s law, E (r, t) denoting
the electric field established by J s (r, t) and G (r) ∈ S

3++
denoting the conductivity tensor defined by each com-
partment. Then, from the quasi-static conditions, ∇ ·
J (r, t) = 0, so ∇ · G (r)E (r, t) = −∇ · J s (r, t). Moreover,
since ∇ × E (r, t) = 0, it follows that E (r, t) = −∇φ (r, t),
where φ (r, t) denotes the potential. Thus, the equation
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that governs the relationship between electromyogram
potentials and uterine current sources is

∇ · G (r) ∇φ (r, t) = ∇ · J s (r, t) . (3)

Solving the forward electromagnetic problem of uter-
ine contractions requires the computation of B(r, t) and
φ (r, t) at ∂A using Eqs.(1) and (3), assuming that J s (r, t)
is known inM and G (r) is known in all domains defined
by the volume conductor geometry (see Figure 3).
The biological current sources J s (r, t) in the myo-

metrium are the transmembrane ionic fluxes due to
concentration gradients, which flow across the surface
membrane of the myocyte (smooth cells) from the extra-
cellular medium into the intracellular medium and vice
versa. The density of these ionic currents is also referred
to as the impressed current density, since its origin is non
electrical in nature, and it is the primary cause for the
establishment of an electric field that induces secondary
density currents in a conductive domain. We will model
J s (r, t) using a bidomain approach, which has proved to
be a successful method to study electrophysiological activ-
ity in the myocardium [21,22] and, more recently, in the
uterus [27].

Myometrial current-source density model
In the myometrium, the intracellular and extracellular
domains are both physically connected through mem-
brane gates, and the intracellular domain is connected
though gap junctions [1,19]. Therefore, we model the
myometrium using the bidomain modeling approach.
This approach represents the tissue (myometrium) as two
interpenetrating extra-intracellular continuous domains
with different conductivity values along and across the
direction of the fiber [21,22], and it models the tissue

using the generalized-passive cable equation. The bido-
main modeling approach was originally derived for mod-
eling the propagation of the transmembrane potential of
the myocardium and proved to be a successful approach
to study the functions of the heart [21,22]. Figure 4 shows
a simplified illustration of the tissue and the bidomain
approach, where φi (r, t) and φe (r, t) are the intracellu-
lar and interstitial potentials, respectively, and vm (r, t) =
φi (r, t) − φe (r, t) is transmembrane potential. The con-
ductivity tensors in the intracellular and extracellular
domains are denoted by G′

i and G′
e (in S/m), and, using

Ohm’s law, the current densities in each domain are given
by J i,e (r, t) = −G′

i,e ∇φi,e (r, t) . The transmembrane vol-
ume current density in (A/m3) is denoted by jm (r, t) and
is given by

jm (r, t) = am cm
∂vm
∂t

+ jion − jstim, (4)

= am
(
cm

∂vm
∂t

+ J ion − J stim
)
, (5)

where jion (r, t) is the ionic volume current density (in
A/m3) of a myocyte, jstim (r, t) is the stimulus volume cur-
rent density (in A/m3), cm is the membrane capacitance
per unit area (in F/m2), and am is the surface-to-volume
ratio of the membrane (in 1/m). To summarize the above
description, the bidomain approach models the signal
propagation in the tissue using the generalized passive
cable equation model (Figure 4) which considers the cur-
rent densities flowing through the extracellular domain
given by Je (r, t), flowing through the intracellular domain
given by J i (r, t), and connecting both media given by
jm (r, t).

Figure 4 Illustration of the bidomain modeling approach.
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Applying the conservation of charge to both domains,
we obtain the following relationships:

∇ · Je (r, t) = jm (r, t) , and (6)
∇ · J i (r, t) = −jm (r, t) . (7)

Adding (6) and (7), we have ∇ · (J i (r, t) + Je (r, t)) =
0. Hence, the total current density in the myometrium is
given by

J (r, t) = −G
′
i∇φi (r, t) − G

′
e∇φe (r, t) , r ∈ M, (8)

which can be expressed in terms of vm (r, t) and φe (r, t) as
follows:

J (r, t) = −G
′
i∇vm (r, t) − G

′
M∇φe (r, t) , r ∈ M, (9)

where G′
M =

(
G′
e + G′

i

)
∈ S

3++ is the bulk myometrium
conductivity tensor. Since spatial variations of vm (r, t)
depend on the local establishment of a transmembrane
current density, jm (r, t) �= 0, we define the impressed
current-density source as J s(r, t) = −G′

i∇vm(r, t). Note
that J s(r, t) exists only when the spatial gradient exists,
i.e., only in a region where the myometrium is undergoing
depolarization (excitation) or repolarization.
The total current at the myometrium J (r, t) depends

on the spatio-temporal variations of vm (r, t) and φe (r, t),
which are governed by the system of equations formed by
Eqs. (5), (6) and (7). Using simple algebraic manipulations,
the aforementioned system of equations can be written in
terms of vm (r, t) and φe (r, t) only, obtaining the following
equivalent expressions:

∇ · G′
i∇(vm (r, t) + φe (r, t)) = am

(
cm

∂vm (r, t)
∂t

+J ion(r, t)−J stim(r, t)
)
,

(10)
∇ · (G′

i + G′
e)∇φe (r, t) = −∇ · G′

i∇vm (r, t) . (11)

This set of reaction-diffusion equations is also known
as the bidomain equations [21,22]. The diffusion part of
the equations governs the spatial evolution of both the
transmembrane and extracellular potentials, and the reac-
tion part is given by the local ionic current cell dynam-
ics. The solutions for vm (r, t) and φe (r, t) depend on
J ion (r, t), J stim (r, t), and the conductivity tensors, in addi-
tion to the boundary and the initial conditions. Since
our goal is to model the propagation of electrical activ-
ity in the myometrium, we are interested in the class of
traveling-wave solutions of these equations whose wave-
form depends on J ion (r, t) and whose initiation depends
on J stim (r, t). In what follows, we describe the models for
both current densities, J ion (r, t) and J stim (r, t), and for the
conductivity tensors, G′

i and G′
e.

Ionic currentmodel
The predominant type of transmembrane-potential wave-
forms measured in the pregnant human myometrium
are spikes and plateau [1,28-31]. In this work, we focus
on modeling the plateau-type transmembrane potential,
as it has been more frequently observed [1,28-30]. In
particular, we model J ion (r, t), using a variation of the
FitzHugh-Nagumo (FHN) equations [32-34], as follows:

J ion(r, t) = − 1
ε1

(k (vm − v1) (v2 − vm)

× (vm − v3) − w) , and (12)
∂w
∂t

= ε2 (βvm − γw + δ) , (13)

where ε1, ε2, k, v1, v2, v3, δ, γ , and β are model constants,
andw (in V) is a state variable of themodel. The parameter
ε1 (in�m2) controls the sharpness of the leading and trail-
ing edges of the action potential waveform; the smaller ε1
is, the more vertical the edge is. Note that ε1 is a quantity
of resistivity, therefore the smaller its value, the greater the
permeability of the membrane to ionic flux. The parame-
ter ε2 (in s−1) controls the action potential duration; the
smaller ε2 is, the longer it takes a cell to recover. The
parameters v1, v2, v3 (in V), and k (in 1/V2) control the
range of vm(r, t). Note that for a given set of k, v1, v2, and
v3, the ratios β/γ and δ/γ control the excitability thresh-
old of the cell. The larger β/γ is, the lower the excitability
threshold that sets the cell dynamic to an oscillatory sta-
ble behavior between resting and exciting states is. Over
a certain value, the cell dynamic becomes bistable, that
is, if the cell starts from a resting potential, it changes to
an excited state and remains there. On the other hand,
a very negative β/γ value results in a permanent rest-
ing state. In the Results Section, presented further below,
we select the model parameters using phase-space anal-
ysis and using the transmembrane potentials recorded
from isolated human myometrial strips at term as a refer-
ence [13,30]. This model does not consider explicitly the
Ca2+ dynamics, and, moreover, it assumes that changes
in the intra- and extra-cellular ion concentrations are
insignificant even after several depolarizations. However,
its simplicity facilitates the modeling of the propagation of
depolarization waves in large 2D and 3D domains.

Stimulus currentmodel
We also introduce a temporal-spatial model for J stim, rep-
resenting the stimulus due to pacemaker areas [1,19], as
follows:

J stim(r, t) = 1
ε1

Np∑
i=1

νihi(r, t), (14)
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where hi(r, t) is a spatio-temporal function with range in
[0, 1], νi is the amplitude (in V), and Np is the number of
pacemaker areas. Intuitively, the former shouldmodify the
excitability of the cell at a certain instant of time based on
the threshold value. In particular, our model assumes that
the uterinemyocyte can act as either a pacemaker or pace-
follower, specifically, the spontaneous electrical behavior
exhibited by the myometrium is an inherent property of
the uterine myocyte (see [19] for more details.) Note that
the size, duration, and intensity of the pacemaker area
need to be chosen such that a stable traveling waveform
solution to the bidomain equations on the myometrium is
possible.

Conductivity tensormodel
The structure of the fasiculata within the uterus has not
been completely characterized as a whole. Despite of not
having a sense of a global uterine-fiber arcuitecture, it has
been possible to characterize local structures in each of
the three layers of the uterine wall [5,6,12]. In [5], the
authors investigated the global fiber architecture of the
non-pregnant uterus by diffusion tensor magnetic reso-
nance imaging (DTMRI). From the ex-vivo analysis of five
non-pregnant uteri, the authors identified an inner circu-
lar layer around the uterine cavity on slices orthogonal
to the long axis of the organ. In the regions outside the
inner circular layer, they could not identify a global struc-
ture but did find several locally aligned groups of fibers. At
the level of the cervix, they found an outer circular layer
and an inner region withmostly longitudinal components.
In [12], from the analysis of the DTMRI of one postpar-
tum uterus, the authors concluded that the myometrium
is organized into bundles, with the fibre bundles forming
interweaving sheets. In the following, we will introduce
an approach for designing the conductivity tensors in the
myometrium.
Assume that the conductivity tensors are diagonal in

a local coordinate system that is defined with respect
to each myocyte and characterized by the unit vectors
{e1, e2, e3}. In particular, Gi and Ge are diagonal matrices
∈ S

3++ given by

Gi =
⎛⎜⎝ σix 0 0

0 σiy 0
0 0 σiz

⎞⎟⎠ , Ge =
⎛⎜⎝ σex 0 0

0 σey 0
0 0 σez

⎞⎟⎠ . (15)

In order to take into account variable fiber orientation in
the myometrium, we need to describe it in a global Carte-
sian coordinate system in which the local basis is defined
at any point r as A= [a1(r) a2(r) a3(r)], where a3(r) is
parallel to the main fiber axis. The representation of the

tensors Gi and Ge in terms of a global coordinate system
is given by

G′
i = AGiAT , G′

e = AGeAT . (16)

Assuming that the myocyte fiber conductivities in both
domains are cylindrically symmetric, then σex = σey =
σet, σix = σiy = σit, σiz = σil, and σez = σel. Therefore, the
conductivity tensors can be expressed as follows [35]:

G′
i = (σil − σit)a3(r)aT3 (r) + σit I3, and (17)

G′
e = (σel − σet)a3(r)aT3 (r) + σet I3. (18)

Hence, to construct the conductivity tensors as a func-
tion of r, it is enough to define the vector field a3(r),
the myometrial fiber orientation, in each location of the
anisotropic domain, as well as the conductivity values
σil, σel, σit,and σet, because of the assumption of cylindric
symmetry.

Designing myometrial fiber orientations To design
a3(r) at each point r, we represent the uterus as a hol-
low volume with uniform thickness, and we describe it as
a union of mutually disjoint closed surfaces or layers. We
use the implicit definition of a surface, namely, the set of
points r satisfying f (r) = 0. Then, at each point r, we
define a set of local orthonormal coordinate axes given
by {̂n(r), t̂1(r), t̂2(r)}, where n̂(r) = ∇f (r)

‖∇f (r)‖ is the nor-
mal vector to the layer containing r, and t̂1(r) and t̂2(r)
are mutually orthogonal vectors that belong to the tangent
plane of the respective layer at point r. We define t̂1(r) and
t̂2(r), using the curve of symmetry of the uterine inner-
circular layer as a reference [5]. This curve goes from the
fundus to the cervix, and it coincides with the long axis
of the non-pregnant uterus. We denote C as the curve of
symmetry using the following parametric representation
as a function of a single parameter t:

C : t 	−→ rC (t) , t1 ≤ t ≤ t2, (19)

where rC (t) is a point defined with respect to the
global coordinate system, and rC (t1) and rC (t2) are the
extreme points of the curve. For example, let rC (t) =(
x (t) , y (t) , z (t)

)
with respect to the Cartesian system.

Define k̂(r) = drC(t)
dt

∣∣∣
t0

/∥∥∥∥ drC(t)
dt

∣∣∣
t0

∥∥∥∥, the unitary vector

field with direction given by the tangent vector of rC (t)
at t0, where rC (t0) is the closest point to r such that〈
drC(t)
dt

∣∣∣
t0
,−−−−−→rC (t0) r

〉
= 0. Then, we define t̂1(r) to be con-

tained in the plane formed by k̂(r) and n̂(r) as follows:

t̂1(r) = βk̂(r) + γ n̂(r), (20)
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subject to the following conditions:〈̂
t1(r), n̂(r)

〉 = 0, and (21)〈̂
t1(r), t̂1(r)

〉2 = 1. (22)

Therefore, replacing (20) in (21) and (22) we obtain the
following system of equations:

β
〈̂
k(r), n̂(r)

〉
+ γ = 0, and (23)

β2 + γ 2 + 2 β γ
〈̂
k(r), n̂(r)

〉
= 1. (24)

Solving for all r, such that
〈̂
k(r), n̂(r)

〉
�= 1, we obtain

β = ± 1√
1−
〈̂
k(r),̂n(r)

〉 and γ = ∓
〈̂
k(r),̂n(r)

〉
√
1−
〈̂
k(r),̂n(r)

〉 . Then t̂2(r) =

t̂1(r)× n̂(r) = βk̂(r)× n̂(r), since by definition it is mutu-
ally orthogonal to t̂1(r). Hence, given t̂1(r) and t̂2(r), we
define a3(r) as follows:

a3(r) = t̂1(r) cos (α) + t̂2(r) sin (α) , (25)

where α is the fiber orientation angle with respect to t̂1(r).
In order to take into account complex fiber orientations
α can be modeled as a spatial function defined over the
domain of interest. Given our uterine volume assump-
tions, the points rC (t1) and rC (t2) are the only points that
satisfy the condition

〈̂
k(r), n̂(r)

〉
= 1. Since at rC (t1) and

rC (t2) we cannot define t̂1(r) and t̂2(r) using the curve C
as a global reference, we set a3(r) = 0, defining a point of
isotropic conductivity. In Figure 5 we represent the fiber
orientation a3(r) with respect to the local coordinate axes
given by {̂n(r), t̂1(r), t̂2(r)}.
If we have a uterine volume such that C is parallel to the

z axis, then a3(r) can be written as a function of n̂(r) as
follows:

a3(r) = (P cos (α) + F sin (α)) n̂(r), (26)

where

P =
⎡⎣ a 0 0
0 a 0
0 0 −1/a

⎤⎦ , F =
⎡⎣ 0 b 0

−b 0 0
0 0 0

⎤⎦ , (27)

a = ∇zf (r)√(∇xf (r)
)2 + (∇yf (r)

)2 , and
b =

∥∥∇f (r)
∥∥√(∇xf (r)

)2 + (∇yf (r)
)2 , (28)

with ∇j the j-th component of the gradient. In the case of
a spherical myometrium, a3(r) is given as by

a3(r) =

⎡⎢⎢⎢⎣
zx cosα√
x2+y2R

+ y sinα

2
√

x2+y2
zy cosα√
x2+y2R

− x sinα√
x2+y2

−
√

x2+y2
R cosα

⎤⎥⎥⎥⎦ , (29)

Figure 5 Simplified illustrations of a3(r)with respect to the local
coordinates axis given by {̂n(r), t̂1(r), t̂2(r)}. The blue plane
contains the vectors n̂(r), k̂(r), and t̂1(r), and it is perpendicular to
the gray plane formed by vectors t̂1(r), t̂1(r) and a3(r). The orange
plane is the cross section of the uterus perpendicular to the vector
drC (t)
dt

∣∣∣
t0
. The gray curve is the curve of symmetry rC (t) with rC (t1)

and rC (t2) extreme points of the curve.

where R = √
x2 + y2 + z2. Note that, for α = 0, the main

axis of the fibers runs vertically from the fundus to the
cervix.

Estimating myocyte fiber conductivities To the best
of our knowledge, values of the intracellular and extra-
cellular conductivity tensors have not been reported for
the human myocyte, and therefore, these have to be esti-
mated. To model the extracellular conductivity values σel
and σet, we assume a grid-type distribution of myocytes
in the myometrium and use an estimate of the extracel-
lular conductivity the human myometrium obtained by
applying Archie’s law [23]. We describe myocytes as long
cylinders with diameter dcell and axis length lcell, such
that dcell � lcell Assuming that myocytes are uniformly
arranged in a cubical grid with length lT = lcell + 2�e and
whose cross section has sides dT = dcell + 2�e, then we
have σel and σet as follows:

σel = σ̃e

⎛⎜⎝1 −
π
(
dcell
2

)2
d2T

⎞⎟⎠ and (30)

σet = σ̃e

(
1 − dcelllcell

dTlT

)
, (31)
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where σ̃e is the conductivity of the extracellularmedium in
the myometrium. σ̃e can be computed using the effective
myometrium conductivity σM, available in the literature,
and Archie’s law [23] as follows:

σ̃e = σM
(1 − p)m

, (32)

where p is the fraction of the volume occupied by the
myocytes and collagenous fibers in the tissue, andm is the
so-called cementation factor, which depends on the shape
and orientation of the myocyte in the tissue.
To compute the intracellular conductivities σil and σit,

we assume that the intracellular and extracellular domains
have equal anisotropy ratios, that is,

G
′
i = ςG

′
e, (33)

and thus we need to compute ς . We obtain an ana-
lytical expression for ς using reported values of the
propagation speed of a transmembrane potential wave-
form traveling on isolated tissue strips from pregnant
human myometrium at term [28]. In particular, replac-
ing (33), (12), and (13) in the bidomain equations (10)
and (11), and solving vm (r, t) for a traveling wave solu-
tion vm (ξ · r−c t), where ξ is a unitary vector pointing
along the main axis of the myocyte and c is the speed of
propagation, we obtain the following expression for ς :

ς = g
(

2 c2ε1am c2m
σel k

(
v∗
1 − 2 v∗

2 + v∗
3
)2
)
, (34)

where g (x) = x
1−x . Further, v

∗
1, v∗

2, and v∗
3 are the roots of

the following polynomial in vm:

f (vm) = (vm − v1) (v2 − vm) (vm − v3)− 1
kγ

(βvmr + δ) ,

(35)

with vmr denoting the resting transmembrane potential of
the human myocyte. Note that in order to have ς ≥ 0, ε1
must satisfy the following inequality:

0 < ε1 <
σel k

(
v∗
1 − 2 v∗

2 + v∗
3
)2

2 c2am c2m
. (36)

Monodomain approximation and boundary conditions
Assuming an equal anisotropy ratio, Eq. (33), simplifies
the solution of the bidomain equations (10) and (11) by
decoupling them as follows:

∇ · ς

(ς + 1)
G′
e∇vm(r, t) = am

(
cm

∂vm(r, t)
∂t

+J ion(r, t)

− J stim(r, t)
)
in M,

(37)

∇ · (ς + 1)
ς

G′
e∇φe(r, t) = −∇ · G′

e∇vm(r, t), in M.

(38)

The above simplification is also known as the mon-
odomain approximation of the bidomain equations,
which, under suitable boundary conditions, allows the
computation of vm and, thus, J s, independent from φe.
To set up boundary conditions for computing elec-

trical potentials, we need to take into account the vol-
ume conductor geometry (see Figure 3). In particular, we
have two bidomain-monodomain interfaces: one between
the myometrium M and abdominal volume A and one
between the myometrium and the intrauterine cavity
U . Therefore, we have the following boundary condi-
tions: (i) continuity of the interstitial potential φe at
the perimetrium surface ∂M to the abdomen potential
φA, (ii) flow of the normal component of J that crosses
over from the uterus to the abdominal medium, (iii) no
flow of the normal component of J s to the abdominal
medium, (iv) continuity of the interstitial potential φe at
the endometrium surface ∂U to the intrauterine cavity
potential φU , (v) flow of the normal component of J that
crosses over from the uterus to the intrauterine cavity
filled with amniotic fluid, (vi) no flow of the normal com-
ponent of J s to the intrauterine cavity, (vii) no flow of
the normal component of J that crosses over from the
abdominal cavity to air, and (viii) either no flow or else
flow of the normal component of J that crosses over from
the intrauterine cavity, filled with amniotic fluid, to the
fetus, depending on if it is covered with vernix caseosa
(λ = 0) or not (λ �= 0) [36]. These boundary conditions
are summarized as follows:

φe(r, t) = φA(r, t), in ∂M,
(39)

n̂M · (G′
i∇φi(r, t) + G′

e∇φe(r, t)) = n̂M · GA∇φA(r, t),

in ∂M, (40)

n̂M · G′
i∇vm(r, t) = 0, in ∂M, (41)

φe(r, t) = φU (r, t), in ∂U (42)

n̂U · (G′
i∇φi(r, t) + G′

e∇φe(r, t)) = n̂U · GU∇φU (r, t),

in ∂U , (43)

n̂U · G′
i∇vm(r, t) = 0, in ∂U , (44)

n̂A · GA∇φA(r, t) = 0, in ∂A (45)

n̂F · GU∇φU (r, t) = λ (̂nF · GF∇φF (r, t)),

in ∂F , (46)

where n̂j is the normal vector to the surface j in each case.
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Summary of modeling assumptions
In this section we list all the assumptions that were con-
sidered while developing our model:

• Volume conductor geometry: it is given by four
spherical compartments. The uterine wall is a single
layerwith uniform thickness. The abdominal,
intrauterine, and fetal compartments have isotropic
and homogeneous conductivity. The uterine
compartment is anisotropic and homogeneous. All
boundaries between compartments, except for the
external boundary of the abdominal and fetal
compartments, are electrically conductive. The fetal
compartment boundary can be set to be electrically
insulated or electrically conductive to take into
account the presence of vernix caseosa.

• Myometrium: It is a continuous medium formed by
array of myocytes with same transmembrane
potential shape across the whole domain. The
extracellular and intracellular tissue conductivities
are anisotropic, homogeneous, and proportional to
each other(equal anisotropic ratio). The fiber
orientation with respect to the main symmetry axis is
kept fix across the whole domain.

• Myocyte: It is a cell of cylindrical shape. Its electrical
conductivity is assumed to have a cylindrical
symmetry with higher conductivity along the main
axis of the cylinder than along the axis defining the
cross section. Transmembrane potential shape is
plateau-type, and any myocyte can play the roll of
pacemaker or follower by means of a stimulus current.

Numerical computation of vm (r, t), φ (r, t), and B (r, t)
The computations of vm (r, t), φ (r, t), and B(r, t) are given
by the following procedure:

• Step 1: Solve for vm(r, t) using Eqs. (37), (12), (13),
and (14) subject to boundary conditions (41) and
(44), and to initial conditions given by

vm(r, 0) = vmr, (47)

wm(r, 0) =
(

β

γ
vmr + δ

γ

)
, (48)

∂vm(r, 0)
∂t

= 0, and (49)

∂wm(r, 0)
∂t

= 0. (50)

• Step 2: Solve for φe(r, t) inM and φ(r, t) inA and
U , using the solution of vm(r, t), computed in Step 1,
and the following expressions:

∇ · (ς + 1)
ς

G′
e∇φe(r, t) = −∇ · G′

e∇vm(r, t), in M,

(51)

∇ · GA∇φ(r, t) = 0, in A, (52)
∇ · G′

U∇φ(r, t) = 0, in U , (53)

subject to the boundary conditions (39), (40), (42),
(43), (45), and (46).

• Step 3: Solve for B(r, t) using Eq.(1), and computing
the total current density J(r, t) in the whole uterine
domain, using the solutions of vm(r, t), φe(r, t), and
φ(r, t), obtained in Steps 1 and 2, and considering the
following boundary conditions:

n̂F × (BF (r, t) − BU (r, t)) = 0, in ∂F , (54)

n̂U × (BM(r, t) − BU (r, t)) = 0, in ∂U , (55)

n̂M × (BA(r, t) − BM(r, t)) = 0, in ∂M, (56)

n̂A × (BA(r, t) − BE(r, t)) = 0, in ∂A, (57)

n̂A × BE(r, t) = 0, in ∂E , (58)

where E is an additional volume that must be
incorporated in order to compute the magnetic field
at the abdominal surface using FEM. The boundary
conditions at the interfaces ∂F , ∂U , ∂M, and ∂A
describe the continuity of the magnetic field between
domains, and the boundary condition at ∂E , the
external boundary of E , is of electric isolation.

To compute the solution in each of the above steps, we
use the FEM solver COMSOLMultiphysics, running on a
server with eight 64-bit processors at 2.3 GHz, with 32 GB
RAM.

Results
In the following, we illustrate our modeling approach by
considering the electrophysiological characteristics of the
myometrium and a spherical volume conductor geometry.
In Figure 6, we illustrate a spherical, four-compartment
volume conductor geometry used in our numerical exam-
ple. We define a spherical myometrium with a 16 cm
radius measured from the center to ∂M and assume the
uterine wall has a uniform thickness of 1 cm.We also con-
sider a spherical fetus with a 12 cm radius concentric to
the myometrium and fully covered with vernix caseosa,
i.e., λ = 0 in (46). The abdominal compartment is also
spherical, with a 21 cm radius shifted−3 cm from the cen-
ter of the myometrium in the x axis. This shift is to take
into account that the uterus is closer to the abdominal sur-
face than to the dorsal surface. We set the coordinate axis
of reference at the center of the myometrium.
The conductivity values for each compartment are given

in Table 1. In particular, to compute the extracellu-
lar myometrial conductivity tensors, we use the average
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Figure 6 Four-compartment volume conductor geometry used in the numerical examples. (a) View of z-x plane, and (b) z-y plane. Each
compartment is assigned a different color. The myometrium has a non-uniform color to denote that its conductivity is anisotropic.

values for the uterine myocyte dimensions at term based
on data reported in [1,4,9] (see Table 2). We assume the
average humanmyocyte shape to be a long cylinder with a
small cross section; therefore, we use a cementation factor
m = 4/3 (see [23] for more details on the computation of
this factor). The volume fraction p occupied by myocytes
and collagenous fibers in the myometrium is set to 0.6.
In order to consider an average myometrial fiber architec-
ture that contains both circularly- and obliquely-oriented
fibers we choose the fiber orientation angle α to be 45o.
Figure 7 illustrates the global structure of the myometrial
fiber orientation for this angle.
We select the model parameters of the ionic current

model using phase-space analysis, using as a reference the
average plateau-type transmembrane potential recorded
from isolated tissue strips of human myometrium at term
[13,30]. In particular, the average resting potential, con-
sidering the results reported from the 37th week of preg-
nancy onwards, is approximately−56mV. The plateau has
an average depolarization of−27±1mV that terminates in
0.9±0.2minutes by an abrupt repolarization to the resting

Table 1 Conductivity values of the volume conductor
geometry

Symbol Value Reference

GA 0.2 S/m [36]

GU 1.74 S/m [36]

GF 0.2 S/m [36]

σel 0.68 S/m Eq. (30)

σet 0.22 S/m Eq. (31)

ς 0.8 Eq. (34)

level [13,30]. Table 3 gives the parameter values used in
the numerical example. Note that we compute the surface-
area to volume-ratio am using the myocyte dimensions in
Table 2.
In [19], the authors reported that, in the human uterus,

there may be a preferential direction of propagation of
contractions, and thus of transmembrane potential prop-
agation, from the fundus toward the isthmus, which
could aid in the expulsion of the fetus. Therefore, in
order to study this assumption with our model, we con-
sider jstim with Np = 1, ν1 = 2 V, and h1(r, t) =
{1, if 0 ≤ t ≤ 0.1 , 0.15 ≤ ‖r‖ ≤ 0.16 and z ≥ 0.15 ; 0,
otherwise. The size and intensity of the pacemaker area
are chosen in order to obtain a stable traveling wave-
form solution to the bidomain equations on the spherical
myometrium.
To solve the set of equations that model the myome-

trial current-source densities and their electromagnetic
fields at the level of the abdomen, we use a three-step
procedure along with Finite Element Methods (FEM)
(See the Methods Section for more details). The FEM

Table 2 Myocyte dimensions and Archie’s law parameters

Symbol Value Reference

dcell 7 μm [1]

lcell 450 μm [1]

dT 8 μm

lT 451 μm

σM 0.5 S/m [36]

m 4/3 [4,23]

p 0.6 [5,23]
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Figure 7 Geometry and fiber orientation in spherical myometrium given by α = 45°.

discretization of the whole volume conductor is done
using tetrahedral elements. The elements used to dis-
cretize each domain consists of 75, 964 elements divided
as follows: 1, 650 elements in the fetus, 7, 605 ele-
ments in the intrauterine cavity, 8, 299 elements in the
myometrium, and 19, 036 elements in the abdominal cav-
ity. To compute the magnetic field using FEM, an addi-
tional domain (domain E in (58)) concentric to the volume

Table 3 Ionic current model parameters

Symbol Value Reference

cm 0.01 F/m2 [36]

vmr −0.056 V [30]

am 5.7587105 m−1 Table 2

ε1 200 ω m2

ε2 0.09 1/s

v1 −0.02 V

v2 −0.04 V

v3 −0.065 V

k 104 1/V2

δ 0.0520 V

γ 0.1

β 1

c 1.15 cm/sec [28]

conductor geometry has to be added. Specifically, we add a
concentric sphere with radius of 1m. The discretization of
this domain consists of 39, 374 elements. The discretized
boundaries consists of 10, 996 triangular elements, and
the number of degrees of freedom of the whole domain
is 159, 130. In all the Steps of the numerical computation
procedure described above we use the generalized min-
imal residual method (GMRES) for solving the resulting
system of linear equations after FEM discretization. The
backward differentiation formula is used to discretize the
time derivative in Step 1.
Figure 8 shows several snapshots of the FEM solu-

tion for one pacemaker on the fundus of a spheri-
cal myometrium, assuming anisotropy as illustrated in
Figure 7. Figure 8 (a)-(c) illustrates the transmembrane
potential and source current density distribution at the
myometrium, Figure 8 (d)-(f ) shows the electrical poten-
tial at the abdominal surface, and Figure 8 (g)-(i) illustrates
the magnetic field density at the abdominal surface. The
magnetic field measured at the abdominal surface, BMMG
(the magnetomyogram field), is proportional to BnA , the
projection of B onto the normal vector of the abdominal
surface, nA.
In Figure 9 (a) we illustrate the temporal response of

the FEM solutions for the transmembrane potential at
different elevations over time. It can be seen that a sta-
ble traveling waveform has been established as the shape



La Rosa et al. BMCMedical Physics 2012, 12:4 Page 13 of 16
http://www.biomedcentral.com/1756-6649/12/4

Figure 8 FEM solution at time instants t= 10 [s], 36 [s], 55 [s] for one pacemaker on the fundus of a spherical myometrium, assuming
anisotropy. (a)-(c) transmembrane potential and source current density distribution at the myometrium, (d)-(f) electrical potential at the
abdominal surface, and (g)-(i) magnetic field density at the abdominal surface.

remains the same. Also, the maximum depolarization
is −16 mV, the average potential in the plateau area
is −25 mV, and the transmembrane potential duration,
before hyperpolarization, is approximately 35 s, which are
fair approximations with respect to the average recorded
transmembrane potentials discussed in [13,30]. Note that
our ionic current model introduces hyperpolarization,
which constrains the excitability of the cell, and thus con-
secutive contractions can only take place until vm reaches
resting potential. In our case, our model can simulate a
minimum period of one contraction every 240 s, allowing

us to model labor contractions whose period reduces to
about one contraction every 300s.
In Figure 9(b) we illustrate the percentage of the con-

tracting myometrial volume as function of time, which in
[7,9] was used as a reference to compute the changes in
the intrauterine pressure due to a contraction. Interest-
ingly, we observe that the percentage of the contracting
myometrial volume as a function of time has the sym-
metric properties and time duration of the intrauterine
pressure waveforms of a pregnant human myometrium at
term, as discussed in [9].
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Figure 9 (a) Temporal response of the FEM solutions for transmembrane potential at different elevations; (b) Percentage of contracting
myometrial volume as a function of time.

Discussion
Our numerical simulation results (see Figure 8) show that,
because of the anisotropy in the conductivity, the direc-
tion of the current density J s is rotated at a certain angle
from the main direction of the propagating transmem-
brane potential vm, and it is the transversal component
of this current, parallel to the x-y plane, which generates
the magnetic field BnA . This observation is in agreement
with the analysis presented in [37], and it is important to
take it into account when interpreting the magnetic field
measurements generated by uterine contractions in the
presence of volume conductor geometry. Therefore, the
spatial signature of BnA is highly dependent on the fiber
orientation of the myometrium. Because of the proxim-
ity of the sensors and the myometrium, it is not strictly
applicable to assume a moving dipole parallel to the direc-
tion of propagation of the transmembrane potential as the
main model for the current source generating the mea-
sured magnetic field. This last interpretation might be
suitable in the case where the transverse length of the
transmembrane potential front is short in comparison to
the area covered by the array of sensors. In contrast, if
the transverse length is larger and thus not covered by
the measured area, (for example, when several cells are
recruited), then it is suitable to consider a moving line
source (stretched ring) model instead.
Though our volume conductor geometry is an oversim-

plification of a real anatomical structure, certain aspects
of it stand as a fair approximation of the volume conduc-
tor geometry when performing MMGmeasurements. For
example, the SARA system, known as the superconduct-
ing quantum interference device array for reproductive

assessment a(SQUID Array for Reproductive Assessment)
is a passive, stationary, floor-mounted instrument at
which the patient sits and leans her abdomen against a
concave surface which contains an array of 151 sensors.
The effect of leaning the abdomen on the concave sur-
face works as a way to standardize the abdominal surface
making the spherical model very suitable to represent
the measuring surface. Also, a spherical uterus is good
approximation at the early stage of pregnancy but not nec-
essarily through all stages. In this sense, a more realistic
population-average uterine model should be constructed
from magnetic resonance images. Unfortunately, expos-
ing of pregnant patients to MRI is not currently the norm,
and thus having access to average uterine geometry for
different stages of pregnancy is not yet possible.
The ionic current model based on extended FHN

equations can reproduce a good approximation of
the plateau-type transmembrane potential recorded in
human myocytes, however, it introduces hyperpolariza-
tion, which constrains the excitability of the cell, and
thus consecutive contractions can only take place until
vm reaches resting potential. In our case, our model can
simulate a minimum period of one contraction every 240
s, allowing us to model labor contractions whose period
reduces to about one contraction every 300 s. In addition,
note that a larger ε2 value can extend the transmem-
brane potential duration to values closer to the average
duration reported in [13,30]. However, a larger ε2 value
also extends the duration of hyperpolarization and there-
fore the plateau of the curve describing the percentage of
contracting myometrial volume. This last observation is
the result of the combined effect of the transmembrane
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potential duration and the geometry of the uterus. Clin-
ical observations on the shape of the uterine pressure
wave have found correlation between the rising slope of
the waveform and contraction efficiency [38], namely, the
steeper the slope the more efficient the contraction is.
Additional numerical examples, using one pacemaker at
the same position, show that our model is consistent with
the latter observation, since we found that changing the
propagation speed of the activity modifies the shape of
the percentage of the contracting myometrial volume as a
function of time. In particular, a faster speed of propaga-
tion of the main transmembrane potential front increases
the rising slope the percentage of the contracting myome-
trial volume, however, above a certain threshold it reduces
the duration of the contraction. Placing two pacemakers
at each extreme of the spherical domain, one at the fundus
and the other one at the cervix, doubles the rising slope
of the percentage of the contracting myometrial volume
curve, and, depending on the duration of the transmem-
brane potential, it introduces a plateau in the curve, which
implies that all volume is contracting. The symmetry of
the contracting myometrial volume curve generated using
our model is primarily due to the symmetry of the volume
conductor used in our simulations and the duration of the
transmembrane potential simulated.
Modeling the different stages of pregnancies can be

accommodated using this model. First the volume con-
ductor geometry should be scaled to the average vol-
ume size corresponding to stage of pregnancy of inter-
est. Specifically, the fetal, the uterine, and the abdominal
shapes should be modified accordingly using reported
values in the literature (e.g., see [3] for uterine shapes).
Second, the conductivity values of the volume conductor
model should be set with respect to the stage of preg-
nancy. For example, the conductivity of the intrauterine
cavity given by the amniotic fluid is known to change
as the pregnancy develops (e.g., see [36]). Regarding the
equal anisotropy ratio, this can be computed by using the
reported values of the speed of propagation, the resting
transmembrane potential, and the updated ionic current
parameters such these fit the transmembrane potential
for the specific stage. Third, the boundary conditions
remain the same across all periods, noting that for bound-
ary condition given by Eq. (46), λ should be set to 1 or
0 depending on the presence of vernix caseosa. Fourth,
incorporation of a bursting type transmembrane potential
can be done using the FHN model by adding a periodic
function to Eq. (13), which control the excitability of the
cell. However, more realistic and complex shapes of trans-
membrane potential can be designed by incorporating, for
example, the ionic current model presented in [17].
Additional approaches to validate our mathematical

model should consider comparisons against real mag-
netic and potential field measurements at the level of the

abdomen, which leads automatically to the next natural
question: how to solve the inverse problem of our model?
Explicitly, given a set of measurements and a paramet-
ric model, can we infer the value of certain parameters of
interest, such as the number of stimui and their positions,
the conductivity tensor in the domain, initial and bound-
ary conditions, etc? Solving the inverse problem stands as
the connecting bridge between multiscale modeling of the
pregnant uterus and clinical applications. In particular, as
a first approach we are planning to use MMG measure-
ments to estimate the current density in the myometrium
and thus search for features that characterize contractions
patterns which lead to preterm-labor.

Conclusion
We proposed a multiscale-forward electromagnetic
model of uterine contractions during pregnancy. Our
model incorporates knowledge of the electrophysiologi-
cal aspects of uterine contractions during pregnancy at
both the cellular and organ levels. We applied a bido-
main approach for modeling the propagation of the
myometrium transmembrane potential vm on the uterus
and used this to compute the action potential φ and the
magnetic field B at the abdominal surface. We introduced
a modified version of the FitzHugh-Nagumo equation for
modeling the ionic currents in each cell. Though our ionic
current model does not consider Ca2+dynamics explic-
itly, the simplicity of the modified equation allows for the
propagating action potential to be modeled under well
defined conditions as shown in this paper. We also pro-
posed a general approach to design conductivity tensors
in the myometrium and to estimate the conductivity ten-
sor values in the extracellular and intracellular domains.
We introduced a simplified geometry for the problem
and proposed a discretized model solution based on a
finite element method approach. Finally, we illustrated
our modeling approach through a numerical example
by modeling uterine contractions at term. Our model is
potentially important as a tool for helping characterize
contractions and for predicting labor using MMG and
EMG.
As part of our future work, we will investigate pear-

shaped uterine domains as a way to approximate better
the uterine geometry. We will also include more accurate
ionic current models as in [13-15,17] and will consider
spatial variations of the fiber orientation.

Endnote
aSARAwas built in collaboration with VSMMedTech Ltd.,
Canada and is installed at the University of Arkansas for
Medical Sciences (UAMS) Hospital.
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