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Abstract
Background: Increased 99mTc-sestamibi stress lung-to-heart ratio (sLHR) has been shown to
predict cardiac outcomes similar to pulmonary uptake of thallium. Peak heart rate and use of
pharmacologic stress affect the interpretation of lung thallium uptake. The current study was
performed to determine whether 99mTc-sestamibi sLHR measurements are affected by stress-
related variables, and whether this in turn affects prognostic utility.

Methods: sLHR was determined in 718 patients undergoing 99mTc-sestamibi SPECT stress imaging.
sLHR was assessed in relation to demographics, hemodynamic variables and outcomes (mean
follow up 5.6 ± 1.1 years).

Results: Mean sLHR was slightly greater in males than in females (P < 0.01) and also showed a
weak negative correlation with age (P < 0.01) and systolic blood pressure (P < 0.01), but was
unrelated to stress method or heart rate at the time of injection. In patients undergoing treadmill
exercise, sLHR was also positively correlated with peak workload (P < 0.05) but inversely with
double product (P < 0.05). The combined explanatory effect of sex, age and hemodynamic variables
on sLHR was less than 10%. The risk of acute myocardial infarction (AMI) or death increased by a
factor of 1.7–1.8 for each SD increase in unadjusted sLHR, and was unaffected by adjustment for
sex, age and hemodynamic variables (hazard ratios 1.6–1.7). The area under the ROC curve for the
unadjusted sLHR was 0.65 (95% CI 0.59–0.71, P < 0.0001) and was unchanged for the adjusted
sLHR (0.65, 95% CI 0.61–0.72, P < 0.0001).

Conclusion: Stress-related variables have only a weak effect on measured sLHR. Unadjusted and
adjusted sLHR provide equivalent prognostic information for prediction of AMI or death.

Background
The assessment of myocardial perfusion using radioactive
tracers has consistently been shown to provide important

prognostic information in patients with known or sus-
pected coronary artery disease [1-3]. A number of addi-
tional non-perfusion parameters of left ventricular
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function have also been described to have prognostic
importance, such as transient ischemic cavity dilation
(TID) and left ventricular systolic function [4,5]. Increased
post-stress 99mTc-sestamibi lung-to-heart ratio (sLHR) has
recently been shown to predict cardiac outcomes inde-
pendent of other clinical and imaging variables [6]. Peak
heart rate and use of pharmacologic stress affect post-
stress pulmonary uptake of thallium-201, and these fac-
tors need to be considered when interpreting lung thal-
lium measurements [7-9]. Lung activity on exercise
thallium studies is inversely related to peak heart rate and
propranolol use, and the use of adjusted reference ranges
has been advocated [7]. It is currently unknown how
stress-related variables influence 99mTc-sestamibi sLHR
and whether this in turn affects its prognostic utility and
clinical interpretation.

Methods
Study population
Between January 1994 and April 1999, consecutive
patients who underwent stress and rest 99mTc-sestamibi
SPECT myocardial perfusion imaging on the same imag-
ing system (Elscint 409; Haifa, Israel) were considered for
inclusion in the study cohort (n = 1,027). The study
cohort, stress procedures and image processing used in
our laboratory have been previously described [10]. Exclu-
sion criteria included planar imaging or imaging not com-
pleted on the designated camera (n = 36), corrupted
storage media (n = 102) or poor quality image data (n =
2), non-standard stress procedures (n = 4), or inability to
link patient data to the Manitoba Population Health
Research Data Repository (n = 140). For patients undergo-
ing more than one scan during the study period, only the
first scan was included in the analysis (n = 25). The study
protocol was approved by local Research Ethics Board and
provincial Health Information Privacy Committee of
Manitoba Health. Individual patient consent was not
required for this retrospective study in compliance with
local legislation governing the use of personal health
information.

Stress protocols and imaging
A two-day protocol utilizing treadmill exercise is the pre-
ferred procedure in our laboratory. A one-day (rest fol-
lowed by stress) procedure was used in a small number of
cases (39 [5 %]). Whenever possible, beta blockers and
calcium-channel antagonists are withheld for 24–48
hours prior to the stress procedure, and nitrates are
avoided for at least six hours. Symptom-limited treadmill
exercise is performed with tracer injection at peak exercise
followed by 1–3 minutes of exercise post-injection. For
individuals unable to achieve a satisfactory exercise work-
load, pharmacologic stress with dipyridamole 0.56 mg/kg
is administered intravenously over 4 minutes with tracer
injection 4 1/2 minutes later. Low-level (supplementary)

exercise is performed following dipyridamole infusion for
those patients without a left bundle branch block when-
ever possible. Supine, non-gated SPECT imaging is com-
menced 30–60 minutes post-stress and 45–75 minutes
following the resting tracer injections.

Scintigraphic interpretation
Visual and quantitative perfusion analysis
An initial visual interpretation of the scan data was per-
formed without image quantification by a pair of nuclear
medicine specialists with extensive experience in cardiac
nuclear medicine. Images were categorized as normal,
equivocal, abnormal with fixed defects, abnormal with fully
reversible defects, or abnormal with partially reversible defects.
For analytic purposes, these categories were recoded using
two variables as follows: normal scan (normal or equivo-
cal) versus abnormal scan (abnormal with fixed or revers-
ible defects); no reversibility (normal, equivocal or
abnormal with fixed defects) versus reversibility (abnor-
mal with fully reversible or partially reversible defects).
The image data was subsequently reprocessed using com-
mercially available software (AutoSPECT and QPS
AutoQUANT, Cedar Sinai Medical Centre and ADAC Lab-
oratories, Milpitas, CA) [11-13]. Left ventricular contours
were checked visually and manually adjusted if the com-
puter-generated automatic contours were found to be
incorrect. Briefly, this software provides a quantitative
defect extent and severity measurement defined from gen-
der-specific normal limits by adding the scores from
twenty left ventricular segments (0 = normal to 4 = absent
uptake) on the stress sestamibi images, and is called the
summed stress score (SSS) [14,15]. The summed rest score
(SRS) and summed difference score (SDS) reflect resting
perfusion abnormalities and the change between the
stress and rest perfusion scores, respectively. We have pre-
viously shown that there is close agreement between the
visual and automated quantitative assessment in terms of
diagnosis and prognosis [10,16]. An automated calcula-
tion of ungated left ventricular volumes post-stress and at
rest with their ratio (referred to as transient ischemic dila-
tion [TID]) was obtained [17]. Visual interpretation and
the quantitative analysis were performed without knowl-
edge of patient outcomes.

Lung uptake measurements
Lung uptake of 99mTc-sestamibi was calculated as a stress
lung-to-heart ratio (sLHR) using an automated technique
previously validated by Bacher-Stier et al [18]. The algo-
rithm sums five adjacent projection images centered on
the anterior view, and then automatically identifies myo-
cardial borders and a crescentic lung region. Lung uptake
is then expressed as the ratio of average lung uptake per
pixel divided by maximum heart uptake per pixel in a 4 ×
4 pixel region containing the hottest cardiac pixel. Inter-
observer variation in LHR measurements was assessed in
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30 cases that were completely re-processed by an individ-
ual not involved in the original analysis and who was
blinded to all clinical information and the previous
results. There was excellent agreement in the sLHR (R =
0.97, P < 0.00001).

Outcomes assessment
Cohort follow up was performed through the Manitoba
Population Health Research Data Repository which con-
tains anonymized encounter-based records of individuals'
interactions with the provincial health care system,
including physician services and hospitalizations for all
residents of the province of Manitoba [19]. These admin-
istrative data have been validated and used in a wide range
of clinical disorders, including prediction of mortality fol-
lowing acute myocardial infarction (AMI) [20-22].

The primary outcome of this study was death or AMI. The
date of death was established from the Vital Statistics data-
base. AMI was defined from hospital discharge diagnosis
(ICD-9-CM 410.xx). Clinical and stress variables were pri-
marily obtained from chart review. The data repository
was used to identify individuals with diabetes or previous
hospitalization with AMI using validated definitions
[22,23].

Statistical analysis
Statistical analysis was performed with a commercial soft-
ware package (Statistica Version 6.1, StatSoft Inc, Tulsa,
OK). Continuous variables are reported as mean ± SD and
P < 0.05 is considered to represent a statistically signifi-
cant difference. Group comparisons were performed
using ANOVA (continuous variables) or a Chi-square test
(categorical variables). Logistic regression was used to

identify the independent correlates of an elevated sLHR
(defined as the 95% upper confidence interval for event-
free patients with visually normal perfusion and SSS ≤ 3).
Cox proportional hazards model was used to estimate rel-
ative event rates from sLHR before and after adjustment
for stress-related correlates. Receiver operating curve
(ROC) analysis was used to assess overall risk stratifica-
tion for single multi-level variables (SPSS Version 11.0,
SPSS Inc, Chicago, IL).

Results
The selection criteria identified 1,027 potentially eligible
cases. Exclusion criteria were present in 309 of these leav-
ing a final study population of 718 patients. Excluded
patients were similar to the final study cohort in terms of
age, gender, stress procedure and frequency of abnormal
scans. The mean age of the cohort was 60 ± 11 years. Of
the 718 patients included in the analysis, 380 (53%) were
male, 186 (26%) had a history of MI, 112 (16%) had
undergone prior coronary bypass surgery or coronary
angioplasty, 90 (13%) were diabetic, and 556 (77%) had
treadmill exercise as the only stress method. As expected,
heart rate at the time of tracer injection was greater with
exercise stress alone (131 ± 21 BPM) than for dipyrida-
mole alone (87 ± 20 BPM) or dipyridamole combined
with supplemental exercise (103 ± 19 BPM) (P < 0.0001).
Similarly, systolic blood pressure varied according to
stress method (exercise only 171 ± 27 mmHg, dipyrida-
mole only 134 ± 29 mmHg, dipyridamole combined with
supplemental exercise 143 ± 22 mmHg; P < 0.0001).

sLHR was positively correlated with SSS (R = 0.38, P <
0.0001), though SSS explained less than 15% of the vari-
ance in sLHR. Of the 718 patients, 69 (10%) had sLHR

Table 1: Cohort characteristics, stress procedure and scan findings in relation to elevated stress lung heart ratio (sLHR).

Normal sLHR (n = 649) Elevated sLHR (n = 69) P

Clinical variables
Age (years) 61 ± 11 59 ± 12 >0.2
Sex (male) 325 (50%) 55 (80%) <0.0001
Previous AMI 154 (24%) 32 (46%) <0.0001
Previous revascularization 93 (14%) 19 (28%) 0.004
Diabetes 74 (11%) 16 (23%) 0.005
Stress Modality
Exercise only 505 (78%) 51 (74%) >0.2
Dipyridimole a 144 (22%) 18 (26%) >0.2
Perfusion
SSS 6 ± 8 16 ± 12 <0.0001
SRS 2 ± 5 8 ± 9 <0.0001
SDS 3 ± 4 7 ± 5 <0.0001
LV Volume
Stress (ml) 72 ± 43 141 ± 100 <0.0001
Rest (ml) 70 ± 40 133 ± 96 <0.0001
TID 1.02 ± 0.13 1.06 ± 0.16 0.02

a dipyridamole alone or combined with supplemental exercise
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values that exceeded the normal range (≤ 0.39). Factors
that were associated with elevated sLHR are summarized
in Table 1 and include male sex, previous heart ischemic
disease (AMI or revascularization), diabetes, greater per-
fusion abnormalities, and larger left ventricular cavity
measurements. Logistic regression showed that only SSS
(P = 0.0003), stress left ventricular volume (P < 0.0001)
and previous revascularization (P = 0.04) were independ-
ent predictors of elevated sLHR.

Clinical and hemodynamic variables that might affect
interpretation of lung uptake measurements were assessed
in the 334 event-free patients with normal perfusion (vis-
ually normal and SSS = 3) (Table 2). Of these, 123 (37%)
were male and 284 (85%) had treadmill exercise as the

only stress method with the remainder receiving either
dipyridamole alone (32 [10%]) or combined with supple-
mental exercise (18 [5%]). Mean sLHR was slightly greater
in males than in females (0.31 ± 0.05 vs. 0.30 ± 0.05, P <
0.01) and also showed a weak negative correlation with
age (R = -0.17, P < 0.01). There was an inverse correlation
with systolic blood pressure (R = -0.11, P < 0.01), but no
relationship with heart rate at the time of injection (R = -
0.01, P > 0.2). Mean sLHR was identical for individuals
undergoing exercise and dipyridamole stress (0.30 ± 0.05
vs. 0.30 ± 0.04, P > 0.2). In the multivariable regression
analysis (Table 3) sex, age and systolic blood pressure
remained independently associated with sLHR but the
combined explanatory effect was weak (7.5% of total var-
iance).

Table 2: Univariate correlates with stress lung-heart-ratios (sLHR). Hemodynamic measurements were recorded at the time of tracer 
injection. Continuous variables were stratified according to the median.

Combined stress methods (n = 334) Exercise stress only (n = 284)

Mean sLHR R value Mean sLHR R value

Sex
Male 0.31 ± 0.05b -0.16b 0.31 ± 0.05b -0.16b

Female 0.30 ± 0.05 0.30 ± 0.05
Age

> median (58 years) 0.30 ± 0.05 a -0.17b 0.30 ± 0.05a -0.19c

< median 0.31 ± 0.05 0.31 ± 0.05
Heart rate

> median (135 BPM) 0.30 ± 0.05 -0.01 0.30 ± 0.05 -0.05
< median 0.30 ± 0.05 0.30 ± 0.05

Systolic BP
> median (175 mmHg) 0.30 ± 0.05b -0.11a 0.30 ± 0.05b -0.15a

< median 0.31 ± 0.05 0.31 ± 0.05
Diastolic BP

> median (85 mmHg) 0.30 ± 0.05 -0.06 0.31 ± 0.05 -0.09
< median 0.30 ± 0.05 0.30 ± 0.05

Stress method
Exercise only 0.30 ± 0.05 0.00 -- --
Dipyridamoled 0.30 ± 0.04 --

Peak workload
> median (8.7 METS) -- -- 0.31 ± 0.05a 0.15 a

< median -- 0.30 ± 0.05
Double product (SBP × 
HR)

> median (24,000) -- -- 0.30 ± 0.05a -0.12a

< median -- 0.31 ± 0.05

a P < 0.05, b P < 0.01, c P < 0.001, d dipyridamole alone or combined with supplemental exercise

Table 3: Multivariate regression of correlates with stress lung-heart-ratios (sLHR).

Combined stress methods (n = 334) Exercise stress only (n = 284)

Factor (P value) Sex (0.0025) Sex (0.0041)
Age (0.0058) Age (0.0002)

Systolic blood pressure (0.0068) Peak double product (0.0017)
Global R2 (P value) 0.075 (<0.0001) 0.083 (<0.0001)
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In the 284 event-free patients with normal perfusion
undergoing treadmill exercise only, sLHR was again unre-
lated to peak heart rate (R = -0.05, P > 0.2) but was posi-
tively correlated with peak workload (R = 0.15, P < 0.05)
and inversely related to systolic blood pressure (R = -0.15,
P < 0.01) and double product (R = -0.12, P < 0.05). Peak

double product was used in the multivariable regression
model since it explained slightly more of the variance in
sLHR than systolic blood pressure. Peak workload was no
longer a significant variable after adjustment for the other
variables.

The mean period of follow up was 5.6 ± 1.1 years. During
this time, 114 (16%) from the cohort experienced a pri-
mary outcome event. There were 81 deaths and 62 acute
myocardial infarctions, including 29 patients recorded as
having AMI followed by death. For the latter, time to AMI
was used in the survival analysis. The hazard ratio (HR)
for an adverse event increased by a factor of 1.7 (95% CI
1.4–1.9) for each SD increase in unadjusted sLHR. This
was no different than for sLHR after adjustment for sex,
age and systolic blood pressure (HR 1.6, 95% CI 1.4–1.9).
ROC analysis confirmed a significant association between
adverse outcomes over the range of sLHR measurements
(Figure 1). The area under the curve for unadjusted sLHR
was 0.65 (95% CI 0.59–0.71, P < 0.0001 versus null
hypothesis of area = 0.5) which is identical to the area
under the curve for sLHR adjusted for sex, age and systolic
blood pressure (0.65, 95% CI 0.59–0.71, P < 0.0001).

Among exercise-only subjects with normal perfusion,
there was no significant improvement in risk stratification
following adjustment for sex, age, and peak double-prod-
uct (area under ROC curve for unadjusted sLHR 0.68,
95% CI 0.60–0.76, P < 0.0001 vs. adjusted sLHR 0.67,
95% CI 0.59–0.75, P < 0.0001). The relative hazard for an
adverse event increased by a factor of 1.8 (95% CI 1.5–
2.1) for each SD increase in unadjusted sLHR, similar to
the adjusted sLHR (HR 1.7, 95% CI 1.4–2.0).

Discussion
This report shows that sex, age and hemodynamic varia-
bles have only a very weak effect on 99mTc-sestamibi stress
lung uptake and together these variables explain less than
10% of variation in the sLHR. The risk of acute myocardial
infarction (AMI) or death increased by a factor of 1.7–1.8
for each SD increase in unadjusted sLHR, and this was
similar after adjustment for sex, age and hemodynamic
variables (hazard ratios 1.6–1.7). The area under the ROC
curve for the unadjusted sLHR was also similar to the
adjusted sLHR. It has previously been shown that the
sLHR gives incremental predictive information when
added to a model containing clinical, stress, perfusion and
left ventricular volume information [6]. The current study
indicates that interpretation of the sLHR is not apprecia-
bly affected by stress-related variables, which contrasts
with lung thallium uptake.

Thallium lung uptake has been shown to be affected by
hemodynamic variables and imaging time. In 59 normal
patients, lower peak heart rate during exercise and pro-

Receiver operating characteristic (ROC) curves for predic-tion of acute myocardial infarction or deathFigure 1
Receiver operating characteristic (ROC) curves for 
prediction of acute myocardial infarction or death. 
ROC curves for unadjusted (solid line) and adjusted (dotted 
line) stress lung-heart-ratios (sLHR) are plotted in relation to 
adverse outcomes. (A) Combined stress methods (adjusted 
for sex, age and systolic blood pressure). (B) Subgroup of 
patients undergoing treadmill exercise only (adjusted for sex, 
age and peak double product).
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pranolol peak heart rate during exercise and propranolol
usage were both associated with higher lung uptake [7]
and this has been confirmed in subsequent studies [24].
The use of a normal range for lung thallium uptake that is
adjusted for peak heart rate has been proposed but has not
been widely adopted [7]. In contrast, we were unable to
find any relationship between heart rate at the time of ses-
tamibi injection and sLHR. The difference in tracer charac-
teristics may in part relate to the transient nature of lung
thallium uptake best detected when imaging begins
within minutes of exercise [9]. Our protocol for sestamibi
imaging does not occur until 30–60 minutes following
the stress injection. In conjunction with the slower rate of
sestamibi extraction, this may attenuate the effect of heart
rate. sLHR did show a modest inverse correlation with
peak double product in those subjects undergoing only
treadmill exercise.

We found slightly higher sLHR in males with normal per-
fusion scans than in females and this has also been
reported by others [25]. This gender effect cannot be
explained from differences in peak heart rate, but may
reflect differences in chest wall tissue composition and
attenuation. Women have been shown to have signifi-
cantly higher resting and hyperemic myocardial blood
flow than men, perhaps related to differences in lipid pro-
files or estrogen [26-28]. Alternatively, gender may simply
be a marker for other factors associated with elevated
sLHR since it was not a significant independent predictor
in the multivariate adjusted model. The reason for the cor-
relation with age is also uncertain, but a significant reduc-
tion in hyperemic flow has been reported after age 70
[29]. The net effect of age and gender was quite weak and
explained less than 5% of the variance in sLHR, and less
than 10% if systolic blood pressure or peak double prod-
uct were also considered. Analysis based upon age-, gen-
der- and stress-adjusted sLHR did not affect the survival
analysis. Therefore, we do not believe that adjusted nor-
mal ranges are required. Finally, we did not find any dif-
ference in sLHR according to whether the patients
performed exercise only or underwent pharmacologic
stress. Once again, this may relate to the relatively long
delay between the stress procedure and subsequent imag-
ing when compared with thallium stress imaging proto-
cols. It suggests that the same normal range can be used
independent of the stress modality.

A limitation of our study is the absence of the additional
functional information that comes from gated SPECT
imaging. Gated SPECT is performed in most nuclear car-
diology laboratories and provides an assessment of
regional and global left ventricular function. Left ventricu-
lar ejection fraction derived from gated SPECT myocardial
perfusion imaging contributes independent prognostic
information [30].

Conclusion
sLHR appears to be another adjunctive prognostic meas-
ure in patients with known or suspected coronary artery
disease. Age, gender and stress variables show only weak
correlations with sLHR, and adjustment for these factors
does not appear to be necessary for interpreting sLHR
measurements. These and other variables, such as regional
perfusion and systolic function, remain important prog-
nostic variables which must be considered in patient risk
stratification.
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